Specification "breduce". Close tm, p. Define ctx2 : olist -> olist -> prop by ctx2 nil nil ; nabla x p, ctx2 (bred x x :: G) (path x p :: D) := ctx2 G D ; nabla x, ctx2 ((pi u\ bred x u <= bred N u) :: G) ((pi q\ path x q <= path N q) :: D) := ctx2 G D. Define name : tm -> prop by nabla n, name n. Define fresh : tm -> tm -> prop by nabla n, fresh n X. Define pname : p -> prop by nabla p, pname p. Theorem ctx2_mem_G : forall G D F, ctx2 G D -> member F G -> ( (exists x, F = bred x x /\ name x) \/ (exists x N, F = (pi u\ bred x u <= bred N u) /\ fresh x N)). induction on 1. intros. case H1. case H2. case H2. search. apply IH to H3 H4. case H5. search. search. case H2. search. apply IH to H3 H4. case H5. search. search. Theorem ctx2_mem_D : forall G D F, ctx2 G D -> member F D -> ( (exists x p, F = path x p /\ name x /\ pname p) \/ (exists x N, F = (pi q\ path x q <= path N q) /\ fresh x N) ). induction on 1. intros. case H1. case H2. case H2. search. apply IH to H3 H4. case H5. search. search. case H2. search. apply IH to H3 H4. case H5. search. search. Theorem ctx2_uniform : forall G D X, nabla n, ctx2 (G n) (D n) -> member (pi u\ bred n u <= bred X u) (G n) -> member (pi q\ path n q <= path X q) (D n). induction on 1. intros. case H1. case H2. case H2. apply IH to H3 H4. search. case H2. apply IH to H3 H4. search. case H2. apply IH to H3 H4. search. case H2. search. apply IH to H3 H4. search. Theorem member_prune_D : forall G D E, nabla (n:tm), ctx2 G D -> member (E n) D -> exists F, E = x\ F. induction on 1. intros. case H1. case H2. case H2. search. apply IH to H3 H4. apply IH to H3 H4. search. case H2. search. apply IH to H3 H4. apply IH to H3 H4. search. Theorem member_D_determinate : forall G D X Y, nabla n, ctx2 (G n) (D n) -> member (pi q\ path n q <= path X q) (D n) -> member (pi q\ path n q <= path Y q) (D n) -> X = Y. induction on 1. intros. case H1. case H2. case H2. case H3. apply IH to H4 H5 H6. search. case H2. case H3. apply IH to H4 H5 H6. search. case H2. case H3. apply IH to H4 H5 H6. search. case H2. case H3. search. apply member_prune_D to H4 H5. apply member_prune_D to H4 H5. Theorem member_D_discrim : forall G D X P, nabla n, ctx2 (G n) (D n) -> member (pi q\ path n q <= path X q) (D n) -> member (path n P) (D n) -> false. induction on 1. intros. case H1. case H2. case H2. case H3. apply IH to H4 H5 H6. case H2. apply member_prune_D to H4 H5. case H2. case H3. apply IH to H4 H5 H6. case H3. apply member_prune_D to H4 H5. Theorem jump_D_invert : forall G D X P, nabla n, ctx2 (G n) (D n) -> member (pi q\ path n q <= path X q) (D n) -> { D n |- path n P } -> { D n |- path X P }. intros. case H3. apply ctx2_mem_D to H1 H5. case H6. case H4. apply member_D_discrim to H1 H2 H5. case H4. case H7. apply member_D_determinate to H1 H2 H5. search. Theorem bred_ltr : forall G D M N P, ctx2 G D -> { G |- bred M N } -> { D |- path M P } -> { D |- path N P }. induction on 2. intros. case H2 (keep). case H3. apply IH to _ H4 H5. search. apply ctx2_mem_D to H1 H6. case H7. case H8. case H5. case H8. case H5. case H3. apply IH to _ H4 H6. search. apply IH to _ H5 H6. search. apply ctx2_mem_D to H1 H7. case H8. case H9. case H6. case H9. case H6. case H3. apply IH to _ H4 H5. inst H6 with n1 = N1. assert {D |- pi q\ path N1 q <= path N1 q}. cut H7 with H8. search. apply ctx2_mem_D to H1 H6. case H7. case H8. case H5. case H8. case H5. apply ctx2_mem_G to H1 H5. case H6. case H7. case H4. search. case H7. case H4. assert {D n1 |- path X P}. apply ctx2_uniform to H1 H5. apply jump_D_invert to H1 H9 H3. search. apply IH to H1 H8 H9. search. Theorem bred_rtl : forall G D M N P, ctx2 G D -> { G |- bred M N } -> { D |- path N P } -> { D |- path M P }. induction on 2. intros. case H2 (keep). case H3. apply IH to _ H4 H5. search. apply ctx2_mem_D to H1 H6. case H7. case H8. case H5. case H8. case H5. case H3. apply IH to _ H4 H6. search. apply IH to _ H5 H6. search. apply ctx2_mem_D to H1 H7. case H8. case H9. case H6. case H9. case H6. assert {D, (pi q\ path n1 q <= path N1 q) |- path N P}. apply IH to _ H4 H5. search. apply ctx2_mem_G to H1 H5. case H6. case H7. case H4. search. case H7. case H4. apply IH to H1 H8 H3. apply ctx2_uniform to H1 H5. search. %%%%%%%%%%%%%%%%%%%%%%% % Two lambda terms must beta-reduce to a common term % if they have the same paths %%%%%%%%%%%%%%%%%%%%%%% Define bfctx : olist -> olist -> prop by bfctx nil nil ; nabla n p, bfctx (bfree n :: L) (path n p :: K) := bfctx L K. Theorem member_prune_path : forall E L, nabla (x:p), member (E x) L -> exists F, E = y\F. induction on 1. intros. case H1. search. apply IH to H2. search. Theorem bfctx_member1 : forall X L K, bfctx L K -> member X L -> exists E F, X = bfree E /\ name E /\ member (path E F) K /\ pname F. induction on 1. intros. case H1. case H2. case H2. search. apply IH to H3 H4. search. Theorem bfctx_member2 : forall X L K, bfctx L K -> member X K -> exists E F, X = path E F /\ name E /\ pname F. induction on 1. intros. case H1. case H2. case H2. search. apply IH to H3 H4. search. Theorem member_path_unique : forall L K X Y F, bfctx L K -> member (path X F) K -> member (path Y F) K -> X = Y. induction on 2. intros. case H2. case H3. search. case H1. apply member_prune_path to H4. case H3. case H1. apply member_prune_path to H4. case H1. apply IH to H6 H4 H5. search. Theorem path_exists : forall L K M, bfctx L K -> {L |- bfree M} -> exists P, {K |- path M P}. induction on 2. intros. case H2. assert bfctx (bfree n1 :: L) (path n1 n2 :: K). apply IH to H4 H3. exists (bnd P). search. apply IH to H1 H3. search. apply bfctx_member1 to H1 H4. case H3. search. Theorem bfree_beta_absurd : forall L K R N, bfctx L K -> {L |- bfree (beta R N)} -> false. intros. case H2. apply bfctx_member1 to H1 H4. case H5. case H3. Theorem path_app : forall L K M N Y, bfctx L K -> {L |- bfree (app M N)} -> {L |- bfree Y} -> (forall P, {K |- path (app M N) P} -> {K |- path Y P}) -> exists YM YN, Y = app YM YN. intros. case H2. apply path_exists to H1 H5. assert {K |- path (app M N) (left P)}. apply H4 to H8. case H9. search. apply bfree_beta_absurd to H1 H3. apply bfctx_member2 to H1 H11. case H13. case H10. apply bfctx_member1 to H1 H6. case H5. case H7. Theorem path_abs : forall L K R Y, bfctx L K -> {L |- bfree (abs R)} -> {L |- bfree Y} -> (forall P, {K |- path (abs R) P} -> {K |- path Y P}) -> exists YR, Y = abs YR. intros. case H2. assert bfctx (bfree n1 :: L) (path n1 n2 :: K). apply path_exists to H6 H5. assert {K |- path (abs R) (bnd P)}. apply H4 to H8. case H9. search. apply bfree_beta_absurd to H1 H3. apply bfctx_member2 to H1 H11. case H10. case H13. apply bfctx_member1 to H1 H6. case H5. case H7. Theorem bfree_sames : forall L K M N, bfctx L K -> {L |- bfree M} -> {L |- bfree N} -> (forall p, {K |- path M p} -> {K |- path N p}) -> M = N. induction on 2. intros. case H2 (keep). % M = (abs M1) apply path_abs to H1 H2 H3 H4. case H3. assert forall p, {K, path n1 n2 |- path (M1 n1) p} -> {K, path n1 n2 |- path (YR n1) p}. intros. assert {K |- path (abs M1) (bnd p)}. apply H4 to H8. case H9. search. apply bfctx_member2 to H1 H11. case H13. case H10. assert bfctx (bfree n1 :: L) (path n1 n2 :: K). apply IH to H8 H5 H6 H7. search. apply bfctx_member1 to H1 H7. case H8. case H6. % M = (app M1 N1) apply path_app to H1 H2 H3 H4. case H3. % Prove M1 = YM assert forall p, {K |- path M1 p} -> {K |- path YM p}. intros. assert {K |- path (app M1 N1) (left p)}. apply H4 to H10. case H11. search. apply bfctx_member2 to H1 H13. case H15. case H12. apply IH to H1 H5 H7 H9. % Prove N1 = YN assert forall p, {K |- path N1 p} -> {K |- path YN p}. intros. assert {K |- path (app M1 N1) (right p)}. apply H4 to H11. case H12. search. apply bfctx_member2 to H1 H14. case H16. case H13. apply IH to H1 H6 H8 H10. % Finish this case search. apply bfctx_member1 to H1 H8. case H9. case H7. % M is a variable apply bfctx_member1 to H1 H6. case H5. assert {K |- path M F1}. apply H4 to H10. case H9. case H11. apply bfree_beta_absurd to H1 H3. apply bfctx_member2 to H1 H13. case H12. apply member_path_unique to H1 H8 H13. search. Define brctx : olist -> olist -> prop by brctx nil nil ; nabla x, brctx (bred x x :: L) (bfree x :: K) := brctx L K ; nabla x, brctx ((pi u\ bred x u <= bred N u) :: L) K := brctx L K. Theorem brctx_mem_1 : forall L K E, brctx L K -> member E L -> ( (exists x, E = bred x x /\ name x) \/ (exists x N, E = (pi u\ bred x u <= bred N u) /\ fresh x N)). induction on 1. intros. case H1 (keep). case H2. case H2. search. apply IH to H3 H4. case H5. search. search. case H2. search. apply IH to H3 H4. case H5. search. search. Theorem brctx_sync : forall L K, nabla x, brctx (L x) (K x) -> member (bred x x) (L x) -> member (bfree x) (K x). induction on 1. intros. case H1. case H2. case H2. apply IH to H3 H4. search. case H2. search. apply IH to H3 H4. search. case H2. apply IH to H3 H4. search. case H2. apply IH to H3 H4. search. Theorem bred_makes_bfree : forall L K M U, brctx L K -> {L |- bred M U} -> {K |- bfree U}. induction on 2. intros. case H2 (keep). apply IH to _ H3. search. apply IH to _ H3. apply IH to _ H4. search. apply IH to _ H3. search. apply brctx_mem_1 to H1 H4. case H5. case H3. case H6. apply brctx_sync to H1 H4. search. case H3. case H6. apply IH to H1 H7. search. Theorem same_paths_bred_same : forall M N U V, (forall P, {path M P} -> {path N P}) -> {bred M U} -> {bred N V} -> U = V. intros. apply bred_makes_bfree to _ H2. apply bred_makes_bfree to _ H3. backchain bfree_sames. intros. apply bred_rtl to _ H2 H6. apply H1 to H7. apply bred_ltr to _ H3 H8. search. % Define btctx : olist -> olist -> prop by % btctx nil nil % ; nabla x, % btctx (bred x x :: L) (tm x :: K) := % btctx L K % ; nabla x, % btctx ((pi u\ bred x u <= bred N u) :: L) (tm x :: K) := % exists U, {L |- bred N U} /\ btctx L K. % % Theorem btctx_mem1 : forall L K F, % btctx L K -> member F K -> exists X, F = tm X /\ name X. % induction on 1. intros. case H1. % case H2. % case H2. % search. % apply IH to H3 H4. search. % case H2. % search. % apply IH to H4 H5. search. % % Theorem btctx_mem2 : forall L K F, % btctx L K -> member F L -> % (exists x, (F = bred x x /\ name x)) \/ % (exists x N, F = (pi u\ bred x u <= bred N u) % /\ fresh x N /\ exists U, {L |- bred N U}). % induction on 1. intros. case H1. % case H2. % case H2. search. apply IH to H3 H4. case H5. search. search. % case H2. search. apply IH to H4 H5. case H6. search. search. % % Theorem btctx_sync : forall L K x, % btctx L K -> % member (tm x) K -> % (exists N, member (pi u\ bred x u <= bred N u) L % /\ exists U, {L |- bred N U}) \/ % member (bred x x) L. % induction on 1. intros. case H1. % case H2. % case H2. search. apply IH to H3 H4. case H5. search. search. % case H2. search. apply IH to H4 H5. case H6. search. search. % % Theorem btctx_mem_prune : forall L K E, nabla (n:tm), % btctx L K -> % member (E n) L -> exists F, E = x\ F. % induction on 1. intros. case H1. % case H2. % case H2. search. apply IH to H3 H4. apply IH to H3 H4. search. % case H2. search. apply IH to H4 H5. apply IH to H4 H5. search. % % %Theorem btctx_mem_discrim : forall L K N x, % % btctx L K -> % % member (pi u\ bred x u <= bred N u) L -> % % member (bred x x) L -> % % false. % %induction on 1. intros. case H1. % % case H2. % % case H2. % % case H3. apply btctx_mem_prune to H4 H5. % % apply IH to H4 H5 H6. % % case H2. % % case H3. apply btctx_mem_prune to H4 H5. % % case H3. apply IH to H4 H5 H6. % % % %Theorem bred_subst : forall L K N R U V, nabla n, % % btctx L K -> % % {L, pi u\bred n u <= bred N u |- bred (R n) (U n)} -> % % {L |- bred N V} -> % % {L, pi u\bred n u <= bred N u |- bred (R n) (U V)}. % %induction on 2. intros. case H2 (keep). % % apply IH to _ H4 H3. search. % % apply IH to H1 H4 H3. apply IH to H1 H5 H3. search. % % assert exists N1', N1 = x\ N1'. skip. case H5. % % apply IH to _ H4 H3. search. % % case H5. % % case H4. apply IH to H1 H6 H3. search. % % apply btctx_mem2 to H1 H6. case H7. % % case H4. % % case H8. search. % % apply btctx_mem_prune to H1 H6. % % case H4. % % apply IH to _ H9 H3. search. % % % or alternatively: % % %case H8. % % % apply IH to _ H9 H3. search. % % % apply btctx_mem_prune to H1 H6. % % Theorem bred_beta_inv : forall L K R N V, % btctx L K -> {L |- bred (R N) V} -> {L |- bred (beta R N) V}. % skip. % % % Theorem bred_terminate : forall L K M, % btctx L K -> {K |- tm M} -> exists U, {L |- bred M U}. % induction on 2. intros. case H2. % apply IH to _ H3. search. % apply IH to H1 H3. apply IH to H1 H4. search. % apply IH to H1 H3. % assert btctx ((pi u\ bred n1 u <= bred N u) :: L) (tm n1 :: K). % apply IH to H6 H4. % inst H7 with n1 = N. cut H8. % apply bred_beta_inv to H1 H9 with R = R. search. % apply btctx_mem1 to H1 H4. case H3. % apply btctx_sync to H1 H4. case H6. search. search. % % Theorem same_paths_joinable : forall M N, % {tm M} -> {tm N} -> % (forall P, {path M P} -> {path N P}) -> % exists U, {bred M U} /\ {bred N U}. % intros. % apply bred_terminate to _ H1. % apply bred_terminate to _ H2. % apply same_paths_bred_same to H3 H4 H5. % search.