Co-Induction in Relational Semantics

Reasoning

[View umt.thm]

Click on a command or tactic to see a detailed view of its use.

%% Author: Alberto Momigliano, http://homepages.inf.ed.ac.uk/amomigl1/
%%
%% An encoding of:
%%
%%  Robin Milner, Mads Tofte: Co-Induction in Relational
%%   Semantics. Theor. Comput. Sci. 87(1): 209-220 (1991)
%% http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-65/ECS-LFCS-88-65.pdf
%%
%% based on:
%%
%% Alberto Momigliano, Simon Ambler: Multi-level Meta-reasoning with
%%  Higher-Order Abstract Syntax. FoSSaCS 2003: 375-391
%% http://link.springer.de/link/service/series/0558/bibs/2620/26200375.htm
%%
%% see also:
%%
%% A Case Study of Co-induction in Isabelle HOL (1993)
%% by Jacob Frost
%% http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.8304
%%

Kind tm,tp,val,venv,tenv	type.

%% Terms
Type app 		tm -> tm -> tm.
Type abs		tm -> tm.
Type fix		tm -> tm.
Type one		tm.
Type shift		tm -> tm.

%% Types
Type arrow		tp -> tp -> tp.
Type ground		tp.

%% Environment <-> list of closure and types
Type empty		venv.
Type cons		val -> venv -> venv.

Type tempty		tenv.
Type tcons		tp -> tenv -> tenv.

%% Values <-> closure,...
Type closure		venv -> tm -> val.
%% representing infinte closures
Type clo 		(val -> val) -> val.


Define reval: venv -> tm -> val -> prop by
reval (cons W K )     one	W;
reval       K         (fix (abs M))  (clo c\ (closure (cons c K) (abs M)));
reval (cons W' K ) ( shift M )   W :=
      	    reval K M W;
reval       K 	    (abs M) 	( closure K (abs M) );
reval       K 	   (app M N) 	W :=
	    exists M' W', reval K M ( closure K (abs M') ) /\
	    	    	   	     reval K N W' /\
				     reval (cons W' K) M' W.

Define has: tenv -> tm -> tp -> prop by
has (tcons A TE )     one	A;
has       TE 	    (fix M) A := has (tcons A TE) M A;
has (tcons A' TE ) ( shift M )   A :=
    	   has TE M A;
has       TE 	    (abs M) (arrow A1 A2) :=
	   has (tcons A1 TE) M A2 ;
has       TE 	   (app M N) 	A :=
	   exists A', has TE M ( arrow A' A) /\
	    	    	   	     has TE N A'.

CoDefine hasty:  val -> tp -> prop, hasty_env : venv -> tenv -> prop by
hasty_env empty tempty;
hasty_env (cons W K) (tcons T TE ):=
	  hasty_env K TE /\ hasty W T;

hasty (closure K (abs F)) A :=
       exists TE, has TE (abs F) A /\ hasty_env K TE;
hasty  (clo c\ (closure (cons c K) (abs M))) T:=
       hasty  (closure (cons
       	       	       	 (clo c\ (closure (cons c K) (abs M)))
	                  K)  (abs M)) T.


Theorem consistency: forall Ks M W TE T,
  reval Ks M W -> hasty_env Ks TE -> has TE M T -> hasty W T.