
Reasoning about Computational Systems
using Abella

http://abella-prover.org

Kaustuv Chaudhuri1 Gopalan Nadathur2

1Inria & LIX/École polytechnique, France

2Department of Computer Science and Engineering
University of Minnesota, Minneapolis, USA

2015-08-02

1

Overview

2

Overview of Abella
Abella is an interactive tactics-based theorem prover for a logic with
the following features

• its underlying substrate is an intuitionistic first-order logic over
simply typed lambda terms

• it incorporates a mechanism for interpreting atoms through
fixed-point definitions

• it allows for inductive and co-inductive forms of reasoning

• it includes logical devices for analyzing binding structure

Abella also builds in a special ability for reasoning about
specifications expressed in a separate executable logic

3

Abella and Computational Systems

Abella offers intriguing capabilities for reasoning about
syntax-directed and rule-based specifications

• such specifications can be formalized succinctly through
fixed-point definitions

• formalizations adopt a natural and flexible relational style as
opposed to a computational style

• the formalizations allow specifications to be interpreted either
inductively or co-inductively in the reasoning process

• binding structure in object systems can be treated via a
well-restricted and effective form of higher-order syntax

• a two-level logic approach allows intuitions about the object
systems to be reflected into the reasoning process

4

Objectives for the Tutorial

We aim to accomplish at least the following goals through the
tutorial

• to expose the novel features of the logic underlying Abella

• to provide a feel for Abella so that you will be able to (and
interested in) experimenting with it on your own

• to show the applicability of Abella in mechanizing the
meta-theory of formal systems

• to indicate the benefits of a special brand of higher-order
abstract syntax in treating object-level binding structure

We will assume a basic familiarity with sequent-style logical systems
and with intuitionistic logic

5

The Structure of the Tutorial
The tutorial will consists of the following conceptual parts

• an exposure to the syntax of formulas in Abella and the basic
theorem proving environment

• a presentation of the special logical features of Abella with
examples of their use

• an exposition of the two-level logic approach a la Abella to
formalization and reasoning

• extensions to reasoning about specifications in a dependently
typed lambda calculus

6

Outline

1 Setup

2 The Reasoning Logic G

3 The Two-Level Logic Approach

4 Co-Induction

5 Extensions

7

Setup

8

How to Run Abella in yourWeb-Browser

Go to:

http://abella-prover.org/try

• Everything runs inside your browser

• Interface reminiscent of ProofGeneral

9

Running Abella Offline

• You will need a working OCaml toolchain + OPAM

• opam install abella

• To get ProofGeneral support, read the instructions on:
http://abella-prover.org/tutorial/

10

Code for This Tutorial

http://abella-prover.org/tutorial/try

Special on-line version just for this tutorial

11

Some Concrete Syntax

Types A → ((B → C) → D) A -> (B -> C) -> D

Application (MN) (J K) M N (J K)

Abstraction λλλx.M x\ M

λλλx:A.M (x:A)\ M

Formulas ⊤,⊥ true, false
F ∧ G, F ∨ G F /\ G, F \/ G

F ⊃ G F -> G

∀∀∀x, y. F forall x y, F

∃∃∃x:A, y. F exists (x:A) y, F

M = N M = N

¬F F -> false

12

Declaring Basic Types and Term Constructors

• New basic types are introduced with Kind declarations.

Kind nat type.
Kind bt type.
Kind tm,ty type.

Reserved: o, olist, and prop.

• New term constructors are introduced with Type declarations.

Type z nat.
Type s nat -> nat.

Type leaf nat -> bt.
Type node bt -> bt -> bt.

Type app tm -> tm -> tm.
Type abs (tm -> tm) -> tm.

13

Theorems and Proofs

1 – Syntax

14

The Reasoning Logic G

15

The Reasoning Logic G

Outline:
1 Ordinary Intuitionistic Logic

2 Equality

3 Fixed Point Definitions

4 Induction
• Inductive data: lists
• Kinds of induction: simple, mutual, nested

5 Higher-Order Abstract Syntax
• Example: subject reduction for STLC

16

Ordinary Intuitionistic Logic

2.1 – Basic Logic

17

Equality

For closed terms M and N, the formula M = N is true if and
only if M and N are αβη-convertible.

Consequences
• Two closed first-order terms are equal iff they are identical.

Kind i type.
Type a,b i.

Theorem eq1 : a = a /\ b = b.
Theorem eq2 : a = b -> false.

• Different constants are distinct.

18

Equality

For closed terms M and N, the formula M = N is true if and
only if M and N are λ-convertible.

Consequences
• Two closed first-order terms are equal iff they are identical.

Kind i type.
Type a,b i.

Theorem eq1 : a = a /\ b = b.
Theorem eq2 : a = b -> false.

• Different constants are distinct.

19

The Nature of Variables
Terminology: variable, eigenvariable, and universal variable used
interchangably in Abella.

Variables are interpreted extensionally in the termmodel of the
underlying logic.

In other words, a variable stands for all its possible instances.

Kind nat type.
Type z nat.
Type s nat -> nat.

The formula∀∀∀x:nat. F stands for:

[z/x]F ∧ [s z/x]F ∧ [s (s z)/x]F ∧ · · ·

20

Equality and Extensional Variables
forall (x:nat) y, x = y -> F x y

We have:

x y x = y x = y -> F x y

z z true F z z

z anything else false true

s z s z true F (s z) (s z)

s z anything else false true

...

In other words, the formula is equivalent to:

forall (x:nat), F x x

21

Equality-Left

More generally, given an assumption M = N:
1 Find all unifiers for M and N.

– A unifier of M and N is a subsitution of terms for the free variables
of M and N that makes them λ-convertible.

2 For each unifier, apply the unifier to the rest of the subgoal to
generate a new subgoal.

Notes:
• There may be infinitely many unifiers
• Unification in the general case is undecidable
• In practice we work with complete sets of unifiers (csu) that
cover all possibilities; csus are often finite, even singletons.

22

Equality Assumptions on Open Terms

Example:

Kind i type

Type f i -> i -> i.
Type g i -> i.

Theorem eq3 : forall x y z,
f x (g y) = f (g y) z -> x = z.

• A csu of f x (g y) and f (g y) z is the singleton set
{[(g y)/x, (g y)/z]}.

• This substitution turns x = z into g y = g y, which is true.

23

Equality Example: Peano’s Axioms

2.2 – Peano

24

Functions vs. Relations

Say you want to define addition on natural numbers.

• Functional approach:
• Declare a new symbol:

Type sum nat -> nat -> nat.

• Define a closed set of computational rules:

Rule sum z N = N.
Rule sum (s M) N = s K where sum M N = K.

• Relational approach:
• Declare a new predicate:

Type plus nat -> nat -> nat -> prop.

• Declare a closed set of properties of the predicate:

forall M, plus z M M.
forall M N K, plus M N K -> plus (s M) N (s K).

25

Functions vs. Relations

Functions Relations
Modifies term language No change to terms
Modifies equality No change to equality
Requires confluence Can be non-deterministic
Fixed inputs and output Modes can vary
Functional programming Logic programming

26

Relational Definitions

Define plus : nat -> nat -> nat -> prop by
plus z N N ;
plus (s M) N (s K) := plus M N K.

type of the relation

cl
au
se
s

head body

• All defined relations must have target type prop.
• Clauses are universally closed over the capitalized identifiers.
• The body implies the head in each clause.
• An omitted body stands for true.
• The set of clauses is closed.

27

Multiple Clauses vs. Single Clause

Define plus1 : nat -> nat -> nat -> prop by
plus1 z N N ;
plus1 (s M) N (s K) := plus1 M N K.

is equivalent to

Define plus2 : nat -> nat -> nat -> prop by
plus2 M N K :=

(M = z /\ N = K)
\/ (exists M’ K’, M = s M’ /\ K = s K’ /\

plus2 M’ N K’).

28

Proving Defined Atoms

If p is a defined relation, then to prove p M1 · · · Mn:
1 Find a clause whose head matches with p M1 · · · Mn;
2 Apply the matching substitution to its body;
3 and prove that instance of the body.

Backtracks over clauses and ways to match.

29

Proving Defined Atoms: Example

Define plus : nat -> nat -> nat -> prop by
plus z N N ;
plus (s M) N (s K) := plus M N K.

Example: plus (s z) (s (s z)) (s (s (s z))):
1 Pick second clause with unifier [z/M, s(s z)/N, s(s z)/K].
2 Yields goal: plus z (s (s z)) (s (s z)).
3 Now pick first clause with unifier [s(s z)/N].
4 Yields goal true, and we’re done!

30

Reasoning About Defined Atoms

To reason about hypothesis p M1 · · · Mn:
1 Find every way to unify p M1 · · · Mnwith some head;
2 Separately reason about each corresponding instance of the
body as a new hypothesis.

Generates one premise (subgoal) per unification solution.

Observe the analogy with equality assumptions!

31

Reasoning About Defined Atoms

To reason about hypothesis p M1 · · · Mn:
1 Find every way to unify p M1 · · · Mnwith some head;
2 Separately reason about each corresponding instance of the
body as a new hypothesis.

Generates one premise (subgoal) per unification solution.

Observe the analogy with equality assumptions!

32

Reasoning About Defined Atoms: Example

Define plus : nat -> nat -> nat -> prop by
plus z N N ;
plus (s M) N (s K) := plus M N K.

Given hypothesis: plus M N (s K):
1 Generate one subgoal for the first clause and unifier
[z/M, s K/N];

2 Another subgoal for the second clause and unifier [s M’/M]

Theorem plus_s : forall M N K, plus M N (s K) ->
(exists J, M = s J) \/ (exists J, N = s J).

33

The case and unfold Tactics

2.3 – case and unfold

34

Consistency of Relational Definitions

• Relational definitions are given a fixed point interpretation.

• That is, every defined atom is considered to be equivalent to the
disjunction of its unfolded forms.

• Such an equivalence can introduce inconsistencies.

Define p : prop by
p := p -> false.

• Abella’s stratification condition guarantees consistency.

35

Stratification

2.4 – Stratification

36

The Expressivity of case and unfold

Consider

Define is_nat1 : nat -> prop by
is_nat1 z ;
is_nat1 (s N) := is_nat1 N.

Define is_nat2 : nat -> prop by
is_nat2 z ;
is_nat2 (s N) := is_nat2 N.

• With case and unfold, we cannot prove:

forall x, is_nat1 x -> is_nat2 x.

• Abella actually interprets fixed points as least fixed points.
• This in turn allows us to perform induction on such definitions.

37

The induction tactic

Given a goal

forall X1 ... Xn, F1 -> ... -> Fk -> ... -> G

where Fk is a defined atom, the invocation

induction on k.

1 Adds an inductive hypothesis (IH):

forall X1 ... Xn, F1 -> ... -> Fk * -> ... -> G

2 Then changes the goal to:

forall X1 ... Xn, F1 -> ... -> Fk @ -> ... -> G

38

Inductive Annotations

Meaning of F*

F has resulted from at least one application of case to an as-
sumption of the form F’@.

• These annotations are only maintained on defined atoms.
• Applying case to F@ changes the annotation to * for the
resulting bodies in every subgoal.

• The * annotation percolates to:
• Both operands of /\ and \/;
• Only the right operand of ->; and
• The bodies of forall and exists.

39

Natural Number Induction

2.5 – Natural Numbers

40

Lists of Natural Numbers

2.6 – Lists

41

Nested andMutual Induction

2.7 – Nested and Mutual Induction

42

The Reasoning Logic G

Outline:
1 Ordinary Intuitionistic Logic

2 Equality

3 Fixed Point Definitions

4 Induction
• Inductive data: lists
• Kinds of induction: simple, mutual, nested

5 Higher-Order Abstract Syntax
• Example: subject reduction for STLC

43

The Reasoning Logic G

Outline:
1 Ordinary Intuitionistic Logic

2 Equality

3 Fixed Point Definitions

4 Induction
• Inductive data: lists
• Kinds of induction: simple, mutual, nested

5 Higher-Order Abstract Syntax
• Example: subject reduction for STLC

44

Principles of Abstract Syntax

[Miller 2015]
1 The names of bound variables should be treated as the same kind of

fiction as we treat white space: they are artifacts of how we write
expressions and have no semantic content.

2 There is “one binder to ring them all.”
3 There is no such thing as a free variable.

– cf. Alan Perlis’ epigram #47

4 Bindings have mobility and the equality theory of expressions must
support such mobility […].

45

Higher-Order Abstract Syntax
Also known as: λ-Tree Syntax

• Binding constructs in syntax are represented with term
constructors of higher-order types.

• The normal forms of the representation are in bijection with the
syntactic constructs.

• Syntactic substitution is for free – part of the λ-converibility
inherent in equality.

46

HOAS: Representing the Simply Typed Lambda Calculus

Warmup: simple types.

Kind ty type.

Type bas ty.
Type arrow ty -> ty -> ty.

JbK = bas JA → BK = arrow JAK JBK

47

HOAS: Representing the Simply Typed Lambda Calculus

(Closed) λ-terms

Kind tm type.

Type app tm -> tm -> tm.
Type abs (tm -> tm) -> tm.

JMNK = app JMK JNKJλλλx.MK = abs (x\ J[x/x]MK)JxK = x

Examples:

Jλλλx.λλλy. xK = abs x\ abs y\ xJλλλx.λλλy.λλλz. x z (y z)K = abs x\ abs y\ abs z\ app (app x z) (app y z)J(λλλx. x x) (λλλx. x x)K = app (abs x\ app x x) (abs x\ app x x)

48

HOAS: Representing the Typing Relation

Γ, x:A ⊢ x : A
Γ, x:A ⊢ M : B

Γ ⊢ (λλλx.M) : A → B

Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

Kind ctx type.

Type emp ctx.
Type add ctx -> tm -> ty -> ctx.

49

HOAS: Representing the Typing Relation

Γ, x:A ⊢ x : A
Γ, x:A ⊢ M : B

Γ ⊢ (λλλx.M) : A → B

Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

Kind ctx type.

Type emp ctx.
Type add ctx -> tm -> ty -> ctx.

50

HOAS: Representing the Typing Relation

Γ, x:A ⊢ x : A
Γ, x:A ⊢ M : B

Γ ⊢ (λλλx.M) : A → B

Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

Kind ctx type.

Type emp ctx.
Type add ctx -> tm -> ty -> ctx.

51

HOAS: Representing Typing Contexts

Define mem : ctx -> tm -> ty -> prop by
mem (add G X A) X A ;
mem (add G Y B) X A := mem G X A.

Γ, x:A ⊢ x : A
Γ, x:A ⊢ M : B

Γ ⊢ (λλλx.M) : A → B
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

Define of : ctx -> tm -> ty -> prop by
of G X A := mem G X A ;

of G (app M N) B :=
exists A, of M (arrow A B) /\ of N A ;

of G (abs x\ M x) (arrow A B) :=
of (add G ?? A) (M ??) B

52

HOAS: Representing Typing Contexts

Define mem : ctx -> tm -> ty -> prop by
mem (add G X A) X A ;
mem (add G Y B) X A := mem G X A.

Γ, x:A ⊢ x : A
Γ, x:A ⊢ M : B

Γ ⊢ (λλλx.M) : A → B
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

Define of : ctx -> tm -> ty -> prop by
of G X A := mem G X A ;

of G (app M N) B :=
exists A, of M (arrow A B) /\ of N A ;

of G (abs x\ M x) (arrow A B) :=
of (add G ?? A) (M ??) B

53

Contexts

What does Γ, x:Amean?
• x /∈ fv(Γ)
• x /∈ fv(A)

• (Γ, x:A)(y) =

{
A if x = y
Γ(y) otherwise

54

Names and the∇∇∇ (nabla) Quantifier

∀∀∀x. F

For every termM, it is the case that [M/x]F is true.

∇∇∇x. F

For any name n that is not free in F, it is the case that [n/x]F
is true.

Every type is inhabited by an infinite set of names.

Terminology: sometimes we say nominal constant instead of name.

55

Some Properties of∇∇∇ vs. ∀∀∀

• ∇∇∇x.∇∇∇y. x ̸= y.
• For any name n /∈ {}, it is that∇∇∇y. n ̸= y.
• For any name n /∈ {}, for any namem /∈ {n}, it is that n ̸= m.

• ∀∀∀x.∀∀∀y. x ̸= y is not provable.
• Given any termM, it must be thatM = M.

• (∀∀∀x.∀∀∀y. p x y)⊃⊃⊃ (∀∀∀z. p z z).
• (∇∇∇x.∇∇∇y. p x y)⊃⊃⊃ (∇∇∇z. p z z) is not provable.

• ∇∇∇x.∇∇∇y. p x ymeans that p holds for any two distinct names.
• ∇∇∇z. p z zmeans that p holds for any name, repeated.

56

Mobility of Binding

The equational theory of λ-terms is restated in terms of∇.

(λλλx.M) = (λλλx.N) if and only if ∇∇∇x. (M = N).

Why not∀∀∀?
• Differentiate between the identity functionλλλx. x and the
constant functionλλλx. c.

• ∀∀∀x. (x = c) is satisfiable.
• ∇∇∇x. (x = c) is false, i.e., ¬∇∇∇x. (x = c) is provable.

57

Names and Equivariance

• Formulas are considered equivalent up to a permutation of their
free names, known as equivariance.

• Example: ifm and n are distinct names, then:
• p m ≡ p n.
• p m n ≡ p n m.
• p m m ̸≡ p m n.

• Note: terms are not equal up to equivariance!

• In Abella, any identifer matching the regexp n[0-9]+ is
considered to be a name.

58

Raising

Let supp(F) stand for the free names in F.

∀∀∀x. F:

For every termM, it is the case that [M/x]F is true.

59

Raising

Let supp(F) stand for the free names in F.

∀∀∀x. F:

For every term M with supp(M) = {}, it is the case that
[M supp(F)/x]F is true.

60

Raising
∀∀∀x. F:

For every term M with supp(M) = {}, it is the case that
[M supp(F)/x]F is true.

• ∀∀∀x.∇∇∇y. p x y
• For every termM, it is that∇∇∇y. p M y.
• For everyM, for any name n /∈ fn(M), it is that p M n.
• ThereforeM cannot mention n.

• ∇∇∇y.∀∀∀x. p x y
• For any name n /∈ {}, it is that∀∀∀x. p x n.
• For any name n, for every termM, it is that p (M n) n.
• In other words,M is of the formλλλx.M′ whereM′ can have x free.
• Therefore,M can (indirectly) mention n.

61

Back to HOAS: The Typing Relation

Γ, x:A ⊢ x : A
Γ, x:A ⊢ M : B

Γ ⊢ (λλλx.M) : A → B
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

Define of : ctx -> tm -> ty -> prop by
of G X A := mem G X A ;

of G (app M N) B :=
exists A, of M (arrow A B) /\ of N A ;

of G (abs x\ M x) (arrow A B) :=
nabla x, of (add G x A) (M x) B

62

Back to HOAS: The Typing Relation

Γ, x:A ⊢ x : A
Γ, x:A ⊢ M : B

Γ ⊢ (λλλx.M) : A → B
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

Define of : ctx -> tm -> ty -> prop by
of G X A := mem G X A ;

of G (app M N) B :=
exists A, of M (arrow A B) /\ of N A ;

of G (abs x\ M x) (arrow A B) :=
nabla x, of (add G x A) (M x) B

63

∇∇∇ in the Body of a Clause

of G (abs x\ M x) (arrow A B) :=
nabla x, of (add G x A) (M x) B

means

forall G M A B,
of G (abs x\ M x) (arrow A B) <-

nabla x, of (add G x A) (M x) B.

• None of G, M, A, B can mention x.
• M can indirectly mention x.

64

HOAS: Typing Relation

2.8 – Properties of the Typing Relation

65

HOAS: Substitution

The main promise of HOAS: substitution “for free”

Define eval : tm -> tm -> prop by
eval (abs R) (abs R) ;
eval (app M N) V :=

exists R, eval M (abs R) /\ eval (R N) V.

Notes:
• (R N)may be arbitrarily larger than (app M N).
• However, proving (eval (R N) V)will require strictly fewer
unfolding steps than (eval (app M N) V).

66

HOAS: Subject Reducton (Extended Example)

2.9 – Subject Reduction

67

INTERMISSION

68

The Two-Level Logic Approach

69

Outline

1 Focused Minimal Intuitionistic Logic

2 Two-Level Logic Approach

3 Context Structure

4 Examples

70

Meta-Theorems

• We have just seen several examples of meta-theorems:
• Cut (for substituting in contexts)
• Instantiation (for replacing names with terms)
• Weakening

• Such theorems can be seen as instances of similar
meta-theorems for a proof system

• If we can isolate this proof system and prove the meta-theorems
once and for all, we can avoid a lot of boilerplate.

71

Small Aside: A Bit of Proof Theory

Let us start with intuitionistic minimal logic.

F,G ::= A | F⇒⇒⇒ G | Πx. F
Γ ::= · | Γ, F

We are going to build a focused proof system for this logic.

Γ⊢⊢⊢ F Goal decomposition sequent
Γ, [F]⊢⊢⊢ A Backchaining sequent

72

Small Aside: A Bit of Proof Theory

Let us start with intuitionistic minimal logic.

F,G ::= A | F⇒⇒⇒ G | Πx. F
Γ ::= · | Γ, F

We are going to build a focused proof system for this logic.

Γ⊢⊢⊢ F Goal decomposition sequent
Γ, [F]⊢⊢⊢ A Backchaining sequent

73

Focused Proof System

Goal decomposition

Γ, F⊢⊢⊢ G
Γ⊢⊢⊢ F⇒⇒⇒ G

(x#Γ) Γ⊢⊢⊢ F
Γ⊢⊢⊢Πx. F

Decision

Γ, F, [F]⊢⊢⊢ A
Γ, F⊢⊢⊢ A

Backchaining

Γ⊢⊢⊢ F Γ, [G]⊢⊢⊢ A
Γ, [F⇒⇒⇒ G]⊢⊢⊢ A

Γ, [[t/x]F]⊢⊢⊢ A
Γ, [Πx. F]⊢⊢⊢ A Γ, [A]⊢⊢⊢ A

74

Focused Proof System

Goal decomposition

Γ, F⊢⊢⊢ G
Γ⊢⊢⊢ F⇒⇒⇒ G

(x#Γ) Γ⊢⊢⊢ F
Γ⊢⊢⊢Πx. F

Decision

Γ, F, [F]⊢⊢⊢ A
Γ, F⊢⊢⊢ A

Backchaining

Γ⊢⊢⊢ F Γ, [G]⊢⊢⊢ A
Γ, [F⇒⇒⇒ G]⊢⊢⊢ A

Γ, [[t/x]F]⊢⊢⊢ A
Γ, [Πx. F]⊢⊢⊢ A Γ, [A]⊢⊢⊢ A

75

Focused Proof System

Goal decomposition

Γ, F⊢⊢⊢ G
Γ⊢⊢⊢ F⇒⇒⇒ G

(x#Γ) Γ⊢⊢⊢ F
Γ⊢⊢⊢Πx. F

Decision

Γ, F, [F]⊢⊢⊢ A
Γ, F⊢⊢⊢ A

Backchaining

Γ⊢⊢⊢ F Γ, [G]⊢⊢⊢ A
Γ, [F⇒⇒⇒ G]⊢⊢⊢ A

Γ, [[t/x]F]⊢⊢⊢ A
Γ, [Πx. F]⊢⊢⊢ A Γ, [A]⊢⊢⊢ A

76

Synthetic (Derived) Rules

Imagine Γ = R1,R2 where:
R1: Πm, n, a, b. ofm (arr a b)⇒⇒⇒ of n a⇒⇒⇒ of (appm n) b.
R2: Πr, a, b. (Πx. of x a⇒⇒⇒ of (r x) b)⇒⇒⇒ of (abs r) (arr a b).
Consider the result of deciding on R1 and R2.

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A Γ, [of (appMN) B]⊢⊢⊢ C
Γ, [[M/m,N/n, A/a,B/b] · · ·⇒⇒⇒ · · ·⇒⇒⇒ · · ·]⊢⊢⊢ C

Γ, [R1]⊢⊢⊢ C
Γ⊢⊢⊢ C

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A
Γ⊢⊢⊢ of (appMN) B

77

Synthetic (Derived) Rules

Imagine Γ = R1,R2 where:
R1: Πm, n, a, b. ofm (arr a b)⇒⇒⇒ of n a⇒⇒⇒ of (appm n) b.
R2: Πr, a, b. (Πx. of x a⇒⇒⇒ of (r x) b)⇒⇒⇒ of (abs r) (arr a b).
Consider the result of deciding on R1 and R2.

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A Γ, [of (appMN) B]⊢⊢⊢ C
Γ, [[M/m,N/n, A/a,B/b] · · ·⇒⇒⇒ · · ·⇒⇒⇒ · · ·]⊢⊢⊢ C

Γ, [R1]⊢⊢⊢ C
Γ⊢⊢⊢ C

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A
Γ⊢⊢⊢ of (appMN) B

78

Synthetic (Derived) Rules

Imagine Γ = R1,R2 where:
R1: Πm, n, a, b. ofm (arr a b)⇒⇒⇒ of n a⇒⇒⇒ of (appm n) b.
R2: Πr, a, b. (Πx. of x a⇒⇒⇒ of (r x) b)⇒⇒⇒ of (abs r) (arr a b).
Consider the result of deciding on R1 and R2.

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A Γ, [of (appMN) B]⊢⊢⊢ C
Γ, [[M/m,N/n, A/a,B/b] · · ·⇒⇒⇒ · · ·⇒⇒⇒ · · ·]⊢⊢⊢ C

Γ, [R1]⊢⊢⊢ C
Γ⊢⊢⊢ C

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A
Γ⊢⊢⊢ of (appMN) B

79

Synthetic (Derived) Rules

Imagine Γ = R1,R2 where:
R1: Πm, n, a, b. ofm (arr a b)⇒⇒⇒ of n a⇒⇒⇒ of (appm n) b.
R2: Πr, a, b. (Πx. of x a⇒⇒⇒ of (r x) b)⇒⇒⇒ of (abs r) (arr a b).
Consider the result of deciding on R1 and R2.

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A Γ, [of (appMN) B]⊢⊢⊢ C
Γ, [[M/m,N/n, A/a,B/b] · · ·⇒⇒⇒ · · ·⇒⇒⇒ · · ·]⊢⊢⊢ C

Γ, [R1]⊢⊢⊢ C
Γ⊢⊢⊢ C

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A
Γ⊢⊢⊢ of (appMN) B

80

Synthetic (Derived) Rules

Imagine Γ = R1,R2 where:
R1: Πm, n, a, b. ofm (arr a b)⇒⇒⇒ of n a⇒⇒⇒ of (appm n) b.
R2: Πr, a, b. (Πx. of x a⇒⇒⇒ of (r x) b)⇒⇒⇒ of (abs r) (arr a b).
Consider the result of deciding on R1 and R2.

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A Γ, [of (appMN) B]⊢⊢⊢ of (appMN) B
Γ, [[M/m,N/n, A/a,B/b] · · ·⇒⇒⇒ · · ·⇒⇒⇒ · · ·]⊢⊢⊢ of (appMN) B

Γ, [R1]⊢⊢⊢ of (appMN) B
Γ⊢⊢⊢ of (appMN) B

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A
Γ⊢⊢⊢ of (appMN) B

81

Synthetic (Derived) Rules

Imagine Γ = R1,R2 where:
R1: Πm, n, a, b. ofm (arr a b)⇒⇒⇒ of n a⇒⇒⇒ of (appm n) b.
R2: Πr, a, b. (Πx. of x a⇒⇒⇒ of (r x) b)⇒⇒⇒ of (abs r) (arr a b).
Consider the result of deciding on R1 and R2.

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A Γ, [of (appMN) B]⊢⊢⊢ of (appMN) B
Γ, [[M/m,N/n, A/a,B/b] · · ·⇒⇒⇒ · · ·⇒⇒⇒ · · ·]⊢⊢⊢ of (appMN) B

Γ, [R1]⊢⊢⊢ of (appMN) B
Γ⊢⊢⊢ of (appMN) B

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A
Γ⊢⊢⊢ of (appMN) B

82

Synthetic (Derived) Rules

Imagine Γ = R1,R2 where:
R1: Πm, n, a, b. ofm (arr a b)⇒⇒⇒ of n a⇒⇒⇒ of (appm n) b.
R2: Πr, a, b. (Πx. of x a⇒⇒⇒ of (r x) b)⇒⇒⇒ of (abs r) (arr a b).
Consider the result of deciding on R1 and R2.

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A Γ, [of (appMN) B]⊢⊢⊢ of (appMN) B
Γ, [[M/m,N/n, A/a,B/b] · · ·⇒⇒⇒ · · ·⇒⇒⇒ · · ·]⊢⊢⊢ of (appMN) B

Γ, [R1]⊢⊢⊢ of (appMN) B
Γ⊢⊢⊢ of (appMN) B

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A
Γ⊢⊢⊢ of (appMN) B

83

Deciding on R2

1 Γ, [of (abs R) (arr A B)]⊢⊢⊢ of (abs R) (arr A B)
Γ, [[R/r, A/a,B/b](Πx. · · ·⇒⇒⇒ · · ·)⇒⇒⇒ · · ·]⊢⊢⊢ of (abs R) (arr A B)

Γ, [R2]⊢⊢⊢ of (abs R) (arr A B)
Γ⊢⊢⊢ of (abs R) (arr A B)

where 1 is:

(x#Γ) Γ, of x A⊢⊢⊢ of (R x) B
Γ⊢⊢⊢Πx. of x A⇒⇒⇒ of (R x) B

So:

(x#Γ) Γ, of x A⊢⊢⊢ of (R x) B
Γ⊢⊢⊢ of (abs R) (arr A B)

84

Deciding on R2

1 Γ, [of (abs R) (arr A B)]⊢⊢⊢ of (abs R) (arr A B)
Γ, [[R/r, A/a,B/b](Πx. · · ·⇒⇒⇒ · · ·)⇒⇒⇒ · · ·]⊢⊢⊢ of (abs R) (arr A B)

Γ, [R2]⊢⊢⊢ of (abs R) (arr A B)
Γ⊢⊢⊢ of (abs R) (arr A B)

where 1 is:

(x#Γ) Γ, of x A⊢⊢⊢ of (R x) B
Γ⊢⊢⊢Πx. of x A⇒⇒⇒ of (R x) B

So:

(x#Γ) Γ, of x A⊢⊢⊢ of (R x) B
Γ⊢⊢⊢ of (abs R) (arr A B)

85

Synthetic Rules vs. SOS rules

Γ⊢⊢⊢M : A → B Γ⊢⊢⊢ N : A

Γ⊢⊢⊢ (MN) : B

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A

Γ⊢⊢⊢ of (appMN) B

Γ, x:A⊢⊢⊢M : B

Γ⊢⊢⊢ (λλλx.M) : A → B

(x#Γ) Γ, of x A⊢⊢⊢ of (R x) B

Γ⊢⊢⊢ of (abs R) (arr A B)

Reasoning about SOS derivations is isomorphic to reasoning
about focused derivations for its minimal theory.

86

Synthetic Rules vs. SOS rules

Γ⊢⊢⊢M : A → B Γ⊢⊢⊢ N : A

Γ⊢⊢⊢ (MN) : B

Γ⊢⊢⊢ ofM (arr A B) Γ⊢⊢⊢ ofN A

Γ⊢⊢⊢ of (appMN) B

Γ, x:A⊢⊢⊢M : B

Γ⊢⊢⊢ (λλλx.M) : A → B

(x#Γ) Γ, of x A⊢⊢⊢ of (R x) B

Γ⊢⊢⊢ of (abs R) (arr A B)

Reasoning about SOS derivations is isomorphic to reasoning
about focused derivations for its minimal theory.

87

Minimal Logic Definable in G

Kind o type.

Type => o -> o -> o.
Type pi (A -> o) -> o.

Kind olist type

Type nil olist.
Type :: o -> olist -> olist.

Define member : o -> olist -> prop by ...

Sequent Encoding

Γ⊢⊢⊢ F seq L F

Γ, [F]⊢⊢⊢ A bch L F A

88

Minimal Logic Definable in G

Kind o type.

Type => o -> o -> o.
Type pi (A -> o) -> o.

Kind olist type

Type nil olist.
Type :: o -> olist -> olist.

Define member : o -> olist -> prop by ...

Sequent Encoding

Γ⊢⊢⊢ F seq L F

Γ, [F]⊢⊢⊢ A bch L F A

89

Focused Minimal Sequent Calculus in G

Define seq : olist -> o -> prop,
bch : olist -> o -> o -> prop by

% goal reduction
seq L (F => G) := seq (F :: L) G ;
seq L (pi F) := nabla x, seq L (F x) ;

% decision
seq L A :=

exists F, member F L /\ bch L F A ;

% backchaining
bch L (F => G) A := seq L F /\ bch L G A ;
bch L (pi F) A := exists T, bch L (F T) A
bch L A A.

90

Meta-Theory of Minimal Sequent Calculus

Theorem cut : forall L C F,
seq L C -> seq (C :: L) F -> seq L F.

Theorem inst : forall L F, nabla x,
seq (L x) (F x) ->

forall T, seq (L T) (F T).

Theorem monotone : forall L1 L2 F,
%% L1 ⊆⊆⊆ L2
(forall G, member G L1 -> member G L2) ->

seq L1 F -> seq L2 F.

91

The Two Level Logic Approach of Abella

• Specification Logic
• Focused sequent calculus for minimal intuitionistic logic
• Shares the type system of G, but formulas of type o
• Concrete syntax the same as λProlog

• Reasoning Logic
• Inductive definition of the specification logic proof system
• Inductive reasoning about specification logic derivations
• Syntactic sugar:

seq L F {L |- F}

bch L F A {L, [F] |- A}

92

Example: STLC Specification

3.1 – Typing and Subject Reduction

93

Uniqueness of Typing

Change to a Church style representation:

type abs ty -> (tm -> tm) -> tm.

of (abs A R) (arr A B) :-

pi x\ of x A => of (R x) B.

Want to show that every term has a unique type.

Theorem type_uniq : forall M A B,
{of M A} -> {of M B} -> A = B.

Need to generalize!

Theorem type_uniq_open : forall L M A B,
{L |- of M A} -> {L |- of M B} -> A = B.

94

Uniqueness of Typing

Change to a Church style representation:

type abs ty -> (tm -> tm) -> tm.

of (abs A R) (arr A B) :-

pi x\ of x A => of (R x) B.

Want to show that every term has a unique type.

Theorem type_uniq : forall M A B,
{of M A} -> {of M B} -> A = B.

Need to generalize!

Theorem type_uniq_open : forall L M A B,
{L |- of M A} -> {L |- of M B} -> A = B.

95

Uniqueness of Typing

Change to a Church style representation:

type abs ty -> (tm -> tm) -> tm.

of (abs A R) (arr A B) :-

pi x\ of x A => of (R x) B.

Want to show that every term has a unique type.

Theorem type_uniq : forall M A B,
{of M A} -> {of M B} -> A = B.

Need to generalize!

Theorem type_uniq_open : forall L M A B,
{L |- of M A} -> {L |- of M B} -> A = B.

96

Structure of Contexts

• The typing dynamic context L is a list of of assumptions.

• Already seen how to inductively define the structure of lists.

• Therefore:

Define ctx : olist -> prop by
ctx nil ;
ctx (of X A :: L) := ctx L.

• But this does not capture X#L!

97

“∇ In The Head”

Meaning of the second clause:

forall L A X,
ctx L -> ctx (of X A :: L).

Let us change the “flavor” of X.

forall L A, nabla x,
ctx L -> ctx (of x A :: L).

Equivalent to:

forall L A, ctx L ->
nabla x, ctx (of x A :: L).

This suggests:

Define ctx : olist -> prop by
ctx nil ;
nabla x, ctx (of x A :: L) := ctx L.

98

“∇ In The Head”

Meaning of the second clause:

forall L A X,
ctx L -> ctx (of X A :: L).

Let us change the “flavor” of X.

forall L A, nabla x,
ctx L -> ctx (of x A :: L).

Equivalent to:

forall L A, ctx L ->
nabla x, ctx (of x A :: L).

This suggests:

Define ctx : olist -> prop by
ctx nil ;
nabla x, ctx (of x A :: L) := ctx L.

99

“∇ In The Head”

Meaning of the second clause:

forall L A X,
ctx L -> ctx (of X A :: L).

Let us change the “flavor” of X.

forall L A, nabla x,
ctx L -> ctx (of x A :: L).

Equivalent to:

forall L A, ctx L ->
nabla x, ctx (of x A :: L).

This suggests:

Define ctx : olist -> prop by
ctx nil ;
nabla x, ctx (of x A :: L) := ctx L.

100

“∇ In The Head”

Meaning of the second clause:

forall L A X,
ctx L -> ctx (of X A :: L).

Let us change the “flavor” of X.

forall L A, nabla x,
ctx L -> ctx (of x A :: L).

Equivalent to:

forall L A, ctx L ->
nabla x, ctx (of x A :: L).

This suggests:

Define ctx : olist -> prop by
ctx nil ;
nabla x, ctx (of x A :: L) := ctx L.

101

Unification with∇ In Heads

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of U B :: LL)

• Umust be a name …
• …that does not occur in B or LL!
• Therefore, case H picks an n /∈ supp(B) ∪ supp(LL) for the
unifier for U.

102

Unification with∇ In Heads

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of U B :: LL)

• Umust be a name …
• …that does not occur in B or LL!
• Therefore, case H picks an n /∈ supp(B) ∪ supp(LL) for the
unifier for U.

103

Unification with∇ In Heads

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of U B :: LL)

• Umust be a name …
• …that does not occur in B or LL!
• Therefore, case H picks an n /∈ supp(B) ∪ supp(LL) for the
unifier for U.

104

Unification with∇ In Heads

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of U B :: LL)

• Umust be a name …
• …that does not occur in B or LL!
• Therefore, case H picks an n /∈ supp(B) ∪ supp(LL) for the
unifier for U.

105

Unification with∇ In Heads

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of n1 B :: (LL n1))

Tactic: case H.

Unification prunes n1 from LL n1.

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of n1 B :: kon n1)

Tactic: case H.

Cannot prune n1, so unification fails!

106

Unification with∇ In Heads

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of n1 B :: (LL n1))

Tactic: case H.

Unification prunes n1 from LL n1.

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of n1 B :: kon n1)

Tactic: case H.

Cannot prune n1, so unification fails!

107

Unification with∇ In Heads

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of n1 B :: (LL n1))

Tactic: case H.

Unification prunes n1 from LL n1.

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of n1 B :: kon n1)

Tactic: case H.

Cannot prune n1, so unification fails!

108

Unification with∇ In Heads

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of n1 B :: (LL n1))

Tactic: case H.

Unification prunes n1 from LL n1.

Clause head: nabla x, ctx (of x A :: L)

Assumption: H : ctx (of n1 B :: kon n1)

Tactic: case H.

Cannot prune n1, so unification fails!

109

Some Puzzles

• Define name : tm -> prop that holds only for names.

Define name : tm -> prop by
nabla x, name x.

• Define fresh : tm -> tm -> prop such that fresh X Y

means X is a name that does not occur in Y.

Define fresh : tm -> tm -> prop by
nabla x, fresh x Y.

110

Some Puzzles

• Define name : tm -> prop that holds only for names.

Define name : tm -> prop by
nabla x, name x.

• Define fresh : tm -> tm -> prop such that fresh X Y

means X is a name that does not occur in Y.

Define fresh : tm -> tm -> prop by
nabla x, fresh x Y.

111

Some Puzzles

• Define name : tm -> prop that holds only for names.

Define name : tm -> prop by
nabla x, name x.

• Define fresh : tm -> tm -> prop such that fresh X Y

means X is a name that does not occur in Y.

Define fresh : tm -> tm -> prop by
nabla x, fresh x Y.

112

Some Puzzles

• Define name : tm -> prop that holds only for names.

Define name : tm -> prop by
nabla x, name x.

• Define fresh : tm -> tm -> prop such that fresh X Y

means X is a name that does not occur in Y.

Define fresh : tm -> tm -> prop by
nabla x, fresh x Y.

113

Extended Example: Uniqueness of Typing

3.2 – Type Uniqueness

114

Context Relations

No reason for ctx relations to be unary.

Define ctx_len : olist -> nat -> prop by
ctx_len nil z ;
nabla x, ctx_len (of x A :: L) (s N) :=

ctx_len L N.

Define ctxs : olist -> olist -> prop by
ctxs nil nil ;
nabla x, ctxs (term x :: L) (neutral x :: K) :=

ctxs L K.

115

Context Relations

No reason for ctx relations to be unary.

Define ctx_len : olist -> nat -> prop by
ctx_len nil z ;
nabla x, ctx_len (of x A :: L) (s N) :=

ctx_len L N.

Define ctxs : olist -> olist -> prop by
ctxs nil nil ;
nabla x, ctxs (term x :: L) (neutral x :: K) :=

ctxs L K.

116

Context Relations

No reason for ctx relations to be unary.

Define ctx_len : olist -> nat -> prop by
ctx_len nil z ;
nabla x, ctx_len (of x A :: L) (s N) :=

ctx_len L N.

Define ctxs : olist -> olist -> prop by
ctxs nil nil ;
nabla x, ctxs (term x :: L) (neutral x :: K) :=

ctxs L K.

117

Example: Partitioning of Lambda Terms

3.3 – Partitioning

118

Extended Example: Relating HOAS and De Bruijn
Representations

3.4 – HOAS vs. Indexed

119

Co-Induction

120

Interpretations of Co-Induction

• Non-termination

• Greatest Fixed Point

• Dual of Induction

Define p : prop by
p := p.

Theorem pth : p -> false.

CoDefine q : prop by
q := q.

Theorem qth : q.

121

The coinduction Tactic

Given a goal

forall X1 ... Xn, F1 -> ... -> Fn -> G

where G is a co-inductively defined atom, the invocation

coinduction

1 Adds a co-inductive hypothesis (CH):

forall X1 ... Xn, F1 -> ... -> Fn -> G +

2 Then changes the goal to:

forall X1 ... Xn, F1 -> ... -> Fn -> G #.

122

Annotations

Annotation Place Tactic Result

@ hypothesis case *

@ goal anything no change

goal unfold +

hypothesis anything no change

123

Example: Automata Simulation

p0 p1 q0 q1

a

b

a

a

Definition: q simulates p, written p ≾≾≾ q, iff:

• for every p′, a such that p a−→ p′,

• there is a q′ such that q a−→ q′, and
• p′ ≾≾≾ q′.

Here,
• q0 ≾≾≾ p0.
• q1 ≾≾≾ p0.
• p0 ̸≾̸≾̸≾ q0.

124

Example: Automata Simulation

4.1 – Automata

125

Example: Diverging λ-Terms

4.2 – Divergence

126

Summary So Far

You have now seen the headline features of Abella.
• Higher-Order Abstract Syntax and∇
• Inductive and Co-Inductive Definitions
• Two-Level Logic Approach

Next:
• Re-ification of the type system
• Beyond simple types
• Automation

127

Summary So Far

You have now seen the headline features of Abella.
• Higher-Order Abstract Syntax and∇
• Inductive and Co-Inductive Definitions
• Two-Level Logic Approach

Next:
• Re-ification of the type system
• Beyond simple types
• Automation

128

Extensions

129

Reasoning about typing
Abella’s induction mechanism has two simple principles:

• Every inductive proof is based on an inductive definition
• All inductive definitions are explicit, fixed, and finite

Consequences:
• Typing is not itself inductive
• Signatures can always be extended

Type z nat.
Type s nat -> nat.

Theorem nat_str : forall (x:nat),
x = z \/ exists (y:nat), x = s y.

% not provable
skip.

Type p nat -> nat -> nat.

Is nat_str still true?
130

Reasoning about typing
Abella’s induction mechanism has two simple principles:

• Every inductive proof is based on an inductive definition
• All inductive definitions are explicit, fixed, and finite

Consequences:
• Typing is not itself inductive
• Signatures can always be extended

Type z nat.
Type s nat -> nat.

Theorem nat_str : forall (x:nat),
x = z \/ exists (y:nat), x = s y.

% not provable
skip.

Type p nat -> nat -> nat.

Is nat_str still true?
131

Re-ifying Typing

Sometimes the typing relation can be reified.

Define is_nat : nat -> prop by
is_nat z ;
is_nat (s N) := is_nat N.

Theorem nat_str : forall x, is_nat x ->
x = z \/ exists y, is_nat y /\ x = s y.

...

But not always!

Define is_tm : tm -> prop by
is_tm (app M N) := is_tm M /\ is_tm N ;
is_tm (abs R) := nabla x, is_tm x -> is_tm (R x).

This is not stratified.

132

Re-ifying Typing

Sometimes the typing relation can be reified.

Define is_nat : nat -> prop by
is_nat z ;
is_nat (s N) := is_nat N.

Theorem nat_str : forall x, is_nat x ->
x = z \/ exists y, is_nat y /\ x = s y.

...

But not always!

Define is_tm : tm -> prop by
is_tm (app M N) := is_tm M /\ is_tm N ;
is_tm (abs R) := nabla x, is_tm x -> is_tm (R x).

This is not stratified.

133

Re-ifying Typing

Sometimes the typing relation can be reified.

Define is_nat : nat -> prop by
is_nat z ;
is_nat (s N) := is_nat N.

Theorem nat_str : forall x, is_nat x ->
x = z \/ exists y, is_nat y /\ x = s y.

...

But not always!

Define is_tm : tm -> prop by
is_tm (app M N) := is_tm M /\ is_tm N ;
is_tm (abs R) := nabla x, is_tm x -> is_tm (R x).

This is not stratified.

134

Two-Level Reification
% typing.sig
type is_nat nat -> o.
type is_tm tm -> o.

% typing.mod
is_nat z.
is_nat (s N) :- is_nat N.

is_tm (app M N) :- is_tm M, is_tm N.
is_tm (abs R) :- pi x\ is_tm x => is_tm (R x).

Then

Theorem nat_str : forall x, {is_nat x} ->
x = z \/ exists y, {is_nat y} /\ x = s y.

Theorem tm_str : forall T, {is_tm T} ->
(exists M N, {is_tm M} /\ {is_tm N} /\ T = app M N)

\/
(exists R, (forall x, {is_tm x} -> {is_tm R x})

/\ T = abs R).

135

Two-Level Reification
% typing.sig
type is_nat nat -> o.
type is_tm tm -> o.

% typing.mod
is_nat z.
is_nat (s N) :- is_nat N.

is_tm (app M N) :- is_tm M, is_tm N.
is_tm (abs R) :- pi x\ is_tm x => is_tm (R x).

Then

Theorem nat_str : forall x, {is_nat x} ->
x = z \/ exists y, {is_nat y} /\ x = s y.

Theorem tm_str : forall T, {is_tm T} ->
(exists M N, {is_tm M} /\ {is_tm N} /\ T = app M N)

\/
(exists R, (forall x, {is_tm x} -> {is_tm R x})

/\ T = abs R).

136

Beyond Simple Types: LF (a.k.a. λΠ)
http://abella-prover.org/lf

• All kinds of typing relations can be reified.
• Encoding dependent types (and DTλ terms):JΠx:A.UK = JAK → JUK JMNK = JMK JNKJa M1 · · · MnK = a M1 · · · Mn Jλλλx:A.MK = λλλx:JAK. JMKJtypeK = lftype

• Encoding typing as specification formulas.JM : Πx:A.UK = Πx. Jx : AK⇒⇒⇒ JM x : UKJM : PK = hastype JMKJPKJA : typeK = istype JAK
• Encoding LF signatures

[[c : U]] = type c JUK.
----Jc : UK.

137

Abella/LF Examples

138

Automation

• Many theorems about contexts are:
• Tedious, and
• Predictable

• This is particularly the case for regular contexts.
• We have a proof of concept for some rather sophisticated and
certifying automation procedures (LFMTP 2014)

• Look out for it in Abella 2.1!

139

More Resources

140

Related Material

• See list on:
http://abella-prover.org/tutorial/

• Extensive tutorial document: Abella: A System for Reasoning
About Relational Specifications, J. Formalized Reasoning, 2014.

• Course notes by Gopalan Nadathur for: Specification and
Reasoning About Computational Systems

• Book – Dale Miller and Gopalan Nadathur: Programming in
Higher-Order Logic, CUP, 2012

141

SomeWork in Progress
That I Know Of

• Compiler verification project in λProlog + Abella
– Using step-indexed logical relations
– YutingWang, Gopalan Nadathur

• ORBI-to-Abella
– Alberto Momigliano & his student(s)

• Certified procedures for type checkers
– YutingWang, Kaustuv Chaudhuri

• Polymorphism and reasoning modules
– Polymorphic definitions and theorems already part of the
upcoming Abella 2.0.4.

– Polymorphic data being worked on by YutingWang

• Declarative proof language
– Kaustuv Chaudhuri

• Exporting Abella proofs + model checking
– Roberto Blanco, Quentin Heath, Dale Miller

142

SomeWork in Progress
That I Know Of

• Compiler verification project in λProlog + Abella
– Using step-indexed logical relations
– YutingWang, Gopalan Nadathur

• ORBI-to-Abella
– Alberto Momigliano & his student(s)

• Certified procedures for type checkers
– YutingWang, Kaustuv Chaudhuri

• Polymorphism and reasoning modules
– Polymorphic definitions and theorems already part of the
upcoming Abella 2.0.4.

– Polymorphic data being worked on by YutingWang

• Declarative proof language
– Kaustuv Chaudhuri

• Exporting Abella proofs + model checking
– Roberto Blanco, Quentin Heath, Dale Miller

143

