%% Translation between higher-order and debruijn lambda terms
%%
%% A similar result is shown for Twelf at
%% http://twelf.plparty.org/wiki/Concrete_representation
%% They seem to need many contorsions which are unrelated to the
%% actual task of the translation. They also define both a forward
%% and backward translation, whereas we use a single translation and
%% prove it deterministic in both directions. Their key difficulty
%% is that they cannot use hypothetical assumptions like our (depth X N)
%% since regular worlds are not powerful enough to specify the
%% form of contexts which are created (e.g. they cannot show the
%% natural number N must be unique).
Specification "debruijn".
%% General property of member
Theorem member_prune : forall E (L:olist), nabla (x:hterm),
member (E x) L -> exists F, E = y\F.
induction on 1. intros. case H1.
search.
apply IH to H2. search.
%% Properties of addition
Define nat : nat -> prop by
nat z ;
nat (s X) := nat X.
Define le : nat -> nat -> prop by
le X X ;
le X (s Y) := le X Y.
Theorem le_dec : forall X Y,
le (s X) Y -> le X Y.
induction on 1. intros. case H1.
search.
apply IH to H2. search.
Theorem le_absurd : forall X,
nat X -> le (s X) X -> false.
induction on 1. intros. case H1.
case H2.
case H2. apply le_dec to H4. apply IH to H3 H5.
Theorem add_le : forall A B C,
{add A B C} -> le B C.
induction on 1. intros. case H1.
search.
apply IH to H2. search.
Theorem add_absurd : forall A C,
nat C -> {add A (s C) C} -> false.
intros. apply add_le to H2. apply le_absurd to H1 H3.
Theorem add_zero : forall A C,
nat C -> {add A C C} -> A = z.
intros. case H2.
search.
case H1. apply add_absurd to H4 H3.
% add is deterministic in its first argument
Theorem add_det1 : forall A1 A2 B C,
nat C -> {add A1 B C} -> {add A2 B C} -> A1 = A2.
induction on 2. intros. case H2.
apply add_zero to H1 H3. search.
case H3.
case H1. apply add_absurd to H5 H4.
case H1. apply IH to H6 H4 H5. search.
% add is deterministic in its second argument
Theorem add_det2 : forall A B1 B2 C,
{add A B1 C} -> {add A B2 C} -> B1 = B2.
induction on 1. intros. case H1.
case H2. search.
case H2. apply IH to H3 H4. search.
%% Theorems specific to our translation
Define ctx : olist -> nat -> prop by
ctx nil z ;
nabla x, ctx (depth x H :: L) (s H) := ctx L H.
Define name : hterm -> prop by
nabla x, name x.
Theorem ctx_nat : forall L H,
ctx L H -> nat H.
induction on 1. intros. case H1.
search.
apply IH to H2. search.
Theorem ctx_world : forall E L H,
ctx L H -> member E L -> exists X HX, E = depth X HX /\ name X.
induction on 1. intros. case H1.
case H2.
case H2.
search.
apply member_prune to H4. apply IH to H3 H4. search.
Theorem depth_name : forall L H X HX,
ctx L H -> {L |- depth X HX} -> name X.
intros. case H2.
apply ctx_world to H1 H4. case H3. search.
Theorem member_depth_det2 : forall L H X H1 H2,
ctx L H -> member (depth X H1) L -> member (depth X H2) L -> H1 = H2.
induction on 2. intros. case H2.
case H3.
search.
case H1. apply member_prune to H4.
case H3.
case H1. apply member_prune to H4.
case H1. apply IH to H6 H4 H5. search.
Theorem depth_det2 : forall L H X H1 H2,
ctx L H -> {L |- depth X H1} -> {L |- depth X H2} -> H1 = H2.
intros.
case H2. apply ctx_world to H1 H5. case H4.
case H3. apply ctx_world to H1 H8. case H7. case H6.
apply member_depth_det2 to H1 H5 H8. search.
Theorem ctx_member_absurd : forall X H1 H2 L,
ctx L H1 -> member (depth X H2) L -> le H1 H2 -> false.
induction on 2. intros. case H2.
case H1. apply ctx_nat to H4. apply le_absurd to H5 H3.
case H1. apply member_prune to H4.
apply le_dec to H3. apply IH to H5 H4 H6.
Theorem member_depth_det1 : forall L H X1 X2 HX,
ctx L H -> member (depth X1 HX) L -> member (depth X2 HX) L -> X1 = X2.
induction on 2. intros. case H2.
case H3.
search.
case H1. apply ctx_member_absurd to H5 H4 _.
case H3.
case H1. apply ctx_member_absurd to H5 H4 _.
case H1. apply IH to H6 H4 H5. search.
Theorem depth_det1 : forall L H X1 X2 HX,
ctx L H -> {L |- depth X1 HX} -> {L |- depth X2 HX} -> X1 = X2.
intros. case H2. case H3.
apply ctx_world to H1 H5. case H4.
apply ctx_world to H1 H7. case H6. case H8.
apply member_depth_det1 to H1 H5 H7. search.
Theorem add_ignores_ctx : forall L H A B C,
ctx L H -> {L |- add A B C} -> {add A B C}.
induction on 2. intros. case H2.
search.
apply IH to H1 H3. search.
apply ctx_world to H1 H4. case H3.
%% ho2db is deterministic in its third argument
%% ie, higher-order --> debruijn is unique
Theorem ho2db_det3 : forall L M D1 D2 H,
ctx L H -> {L |- ho2db M H D1} -> {L |- ho2db M H D2} -> D1 = D2.
induction on 2. intros. case H2.
case H3.
apply IH to H1 H4 H6. apply IH to H1 H5 H7. search.
apply depth_name to H1 H6. case H8.
apply ctx_world to H1 H7. case H6.
case H3.
apply ctx_nat to H1. apply IH to _ H4 H5. search.
apply depth_name to H1 H5. case H7.
apply ctx_world to H1 H6. case H5.
case H3.
apply depth_name to H1 H4. case H8.
apply depth_name to H1 H4. case H7.
apply depth_det2 to H1 H4 H6.
apply add_ignores_ctx to H1 H5. apply add_ignores_ctx to H1 H7.
apply add_det2 to H8 H9. search.
apply ctx_world to H1 H7. case H6.
apply ctx_world to H1 H5. case H4.
Theorem ho2db_det3_simple : forall M D1 D2,
{ho2db M z D1} -> {ho2db M z D2} -> D1 = D2.
intros. apply ho2db_det3 to _ H1 H2. search.
%% ho2db is deterministic in its first argument
%% ie, debruijn --> higher-order is unique
%% proof is mostly the same as ho2db_det3 except with fewer cases
Theorem ho2db_det1 : forall L M1 M2 D H,
ctx L H -> {L |- ho2db M1 H D} -> {L |- ho2db M2 H D} -> M1 = M2.
induction on 2. intros. case H2.
case H3.
apply IH to H1 H4 H6. apply IH to H1 H5 H7. search.
apply ctx_world to H1 H7. case H6.
case H3.
apply ctx_nat to H1. apply IH to _ H4 H5. search.
apply ctx_world to H1 H6. case H5.
case H3.
apply add_ignores_ctx to H1 H5. apply add_ignores_ctx to H1 H7.
apply ctx_nat to H1. apply add_det1 to H10 H8 H9.
apply depth_det1 to H1 H4 H6. search.
apply ctx_world to H1 H7. case H6.
apply ctx_world to H1 H5. case H4.
Theorem ho2db_det1_simple : forall M1 M2 D,
{ho2db M1 z D} -> {ho2db M2 z D} -> M1 = M2.
intros. apply ho2db_det1 to _ H1 H2. search.