%% Type uniqueness for the simply-typed lambda-calculus
%% A single logic approach
Kind tm, ty type.
Type app tm -> tm -> tm.
Type abs ty -> (tm -> tm) -> tm.
Type arr ty -> ty -> ty.
Type bind tm -> ty -> o.
Theorem member_prune : forall (L:olist) E, nabla (x:tm),
member (E x) L -> exists F, E = x\F.
induction on 1. intros. case H1.
search.
apply IH to H2. search.
Define ctx : olist -> prop by
ctx nil ;
nabla x, ctx (bind x A :: L) := ctx L.
Define of : olist -> tm -> ty -> prop by
nabla x, of (L x) x A := nabla x, member (bind x A) (L x) ;
of L (app M N) B := exists A, of L M (arr A B) /\ of L N A ;
of L (abs A R) (arr A B) := nabla x, of (bind x A :: L) (R x) B.
Theorem ctx_uniq : forall L E T1 T2,
ctx L -> member (bind E T1) L -> member (bind E T2) L -> T1 = T2.
induction on 1. intros. case H1.
case H2.
case H2.
case H3.
search.
apply member_prune to H5.
case H3.
apply member_prune to H5.
apply IH to H4 H5 H6. search.
Theorem type_uniq : forall L E T1 T2,
ctx L -> of L E T1 -> of L E T2 -> T1 = T2.
induction on 2. intros. case H2.
case H3.
apply ctx_uniq to H1 H4 H5. search.
case H3.
apply IH to H1 H4 H6. search.
case H3.
apply IH to _ H4 H5. search.