# Reasoning

[View well-founded.thm]

Click on a command or tactic to see a detailed view of its use.

```%% Well-foundedness is characterized by using the idea of accessibility
%% (e.g. see https://coq.inria.fr/library/Coq.Init.Wf.html).
%%
%% Author: Todd Wilson
%%

%%%% Natural numbers

Kind nat type.
Type z  nat.
Type s  nat -> nat.

% Ground nats
Define nat : nat -> prop by
nat z;
nat (s N) := nat N.

% Less than
Define lt : nat -> nat -> prop by
lt N (s N);
lt N1 (s N2) := lt N1 N2.

% The accessible part of the less-than relation
Define lt_acc : nat -> prop by
lt_acc N := forall M, lt M N -> lt_acc M.

%%%% Every natural number is accessible.

Theorem nat_acc : forall N, nat N -> lt_acc N.
induction on 1. intros. case H1.
unfold. intros. case H2.
apply IH to H2. unfold. intros. case H4.
search.
case H3. apply H6 to H5. search.

%%%% Some properties of lt

Theorem lt_z : forall N, nat N -> lt z (s N).
induction on 1. intros. case H1.
search.
apply IH to H2. search.
Theorem lt_s : forall N1 N2, lt N1 N2 -> lt (s N1) (s N2).
induction on 1. intros. case H1.
search.
apply IH to H2. search.

%%%% Algorithms

% Subtraction
Define sub : nat -> nat -> nat -> prop by
sub N z N := nat N;
sub (s N1) (s N2) N3 := sub N1 N2 N3.

% Remainder: mod N M = R
Define mod : nat -> nat -> nat -> prop by
mod N M N := lt N M;
mod N M R := exists N', sub N M N' /\ mod N' M R.

% Euclid's Algorithm: gcd N M = D (including gcd z z = z)
Define gcd : nat -> nat -> nat -> prop by
gcd N z N;
gcd N (s M) D := exists R, mod N (s M) R /\ gcd (s M) R D.

%%%% Properties of algorithms

% Totality of subtraction
Theorem sub_total : forall N1 N2,
nat N1 -> nat N2 ->
lt N1 N2 \/ exists N3, nat N3 /\ sub N1 N2 N3.
induction on 1. intros. case H1.
case H2.
search.
apply lt_z to H3. search.
case H2.
search.
apply IH to H3 H4. case H5.
apply lt_s to H6. search.
search.
% Non-zero subtraction gets smaller
Theorem sub_lt : forall N1 N2 N3,
nat N2 -> sub N1 (s N2) N3 ->
lt N3 N1.
induction on 1. intros. case H1.
case H2. case H3. search.
case H2. apply IH to H3 H4. search.

% Totality of mod N (s M) R, by strong induction on N
Theorem mod_total_strong : forall N M,
nat N -> lt_acc N -> nat M ->
exists R, nat R /\ mod N (s M) R.
induction on 2. intros. case H2. apply sub_total to H1 _ with N2 = s M. case H5.
search.
apply sub_lt to H3 H7. apply H4 to H8. apply IH to H6 H9 H3. search.
Theorem mod_total : forall N M,
nat N -> nat M ->
exists R, nat R /\ mod N (s M) R.
intros. apply nat_acc to H1. apply mod_total_strong to H1 H3 H2. search.

% Remainder smaller than divisor
Theorem mod_lt : forall N M R, mod N M R -> lt R M.
induction on 1. intros. case H1.
search.
apply IH to H3. search.

% Totality of gcd N M D, by strong induction on m
Theorem gcd_total_strong : forall N M,
nat N -> nat M -> lt_acc M ->
exists D, nat D /\ gcd N M D.
induction on 3. intros. case H3.
case H2.
search.
apply mod_total to H1 H5. apply mod_lt to H7. apply H4 to H8. %\
apply IH to _ H6 H9 with N = s N1. search.
Theorem gcd_total : forall N M,
nat N -> nat M ->
exists D, nat D /\ gcd N M D.
intros. apply nat_acc to H2. apply gcd_total_strong to H1 H2 H3. search.
```