Kind name,action,proc type.
Import "ccs_core".
Import "ccs_ctx".
Import "ccs_bisim".
Import "ccs_context".
Define bisim_context_t : proc -> proc -> proc -> proc -> prop by
bisim_context_t P1 P3 Q1 Q3 :=
exists P2 Q2, bisim_t P1 P2 Q1 Q2 /\ context_t P2 P3 Q2 Q3.
Theorem bisim_context_t_reflexive : forall P, bisim_context_t P P P P.
intros. unfold. witness P. witness P. split.
backchain bisim_t_reflexive.
search.
Theorem bisim_context_reflexive : forall P, bisim_up_to bisim_context_t P P.
coinduction. intros. unfold.
intros. witness P1. split. search.
witness P1. witness P1. split.
unfold. witness P1. witness P1. split.
unfold. backchain bisim_reflexive_. backchain bisim_reflexive_.
search.
backchain CH.
intros. witness Q1. split. search.
witness Q1. witness Q1. split.
unfold. witness Q1. witness Q1. split.
unfold. backchain bisim_reflexive_. backchain bisim_reflexive_.
search.
backchain CH.
Theorem bisim_context_t_contexts : forall C P1 P2 Q1 Q2,
at C P2 P1 -> at C Q2 Q1 ->
bisim_context_t P1 P2 Q1 Q2.
intros. unfold. witness P1. witness Q1. split.
unfold. backchain bisim_reflexive_. backchain bisim_reflexive_.
search.
Theorem bisim_substitutive_ : forall C P1 Q1 P2 Q2,
at C P1 Q1 -> at C P2 Q2 ->
bisim_up_to refl_t P1 P2 ->
bisim_up_to refl_t Q1 Q2.
apply bisim_substitutive. case H1. intros. backchain H2.
Theorem ctx_mirror : forall C P1 P2 Q1, at C P1 P2 -> exists Q2, at C Q1 Q2.
induction on 1. intros. case H1.
search.
apply IH to H2 with Q1 = Q1. search.
apply IH to H2 with Q1 = Q1. search.
apply IH to H2 with Q1 = Q1. search.
apply IH to H2 with Q1 = Q1. search.
apply IH to H2 with Q1 = Q1. search.
Theorem bisim_context_substitutive : substitutive_rel (bisim_up_to bisim_context_t).
unfold. coinduction. intros. unfold.
% from P
intros. apply ctx_faithful to H1 H4. case H5.
apply H7 to H2. witness RR. split. search.
witness P1. witness P2. split. backchain bisim_context_t_contexts.
backchain CH.
case H3.
apply H9 to H6. apply H8 to H11. apply H14 to H2.
witness RR. split. search.
case H12. case H18. case H17.
apply ctx_mirror to H7 with Q1 = P5.
apply ctx_mirror to H16 with Q1 = Q5.
apply bisim_substitutive_ to H7 H23 H21.
apply bisim_substitutive_ to H16 H24 H22.
apply concat_ctx2 to H19 H23 H20 H24.
witness P4. witness Q4. split. search.
backchain CH.
apply H6 to H2. witness P3. split. search.
witness P3. witness P3. split.
backchain bisim_context_t_reflexive.
backchain CH. backchain bisim_context_reflexive.
% from Q
intros. apply ctx_faithful to H2 H4. case H5.
apply H7 to H1. witness RR. split. search.
witness P1. witness P2. split. backchain bisim_context_t_contexts.
backchain CH.
case H3.
apply H10 to H6. apply H8 to H11. apply H14 to H1.
witness RR. split. search.
case H12. case H18. case H17.
apply ctx_mirror to H7 with Q1 = P5.
apply ctx_mirror to H16 with Q1 = Q5.
apply bisim_substitutive_ to H7 H24 H22.
apply bisim_substitutive_ to H16 H23 H21.
apply concat_ctx2 to H19 H23 H20 H24.
witness P4. witness Q4. split. search.
backchain CH.
apply H6 to H1. witness Q3. split. search.
witness Q3. witness Q3. split. backchain bisim_context_t_reflexive.
backchain CH. backchain bisim_context_reflexive.
Theorem bisim_context_sound_fst : is_sound_fst bisim_context_t.
unfold. coinduction. intros. case H1. unfold.
% from P
intros.
case H2. clear H7. apply H6 to H5. clear H6. case H9.
case H3. clear H12. apply H11 to H8. clear H11.
case H4. clear H17. apply H16 to H13. clear H16. case H19.
witness Q6. split. search.
witness P3. witness Q6. split. search.
case H14. case H21.
assert bisim_up_to refl_t P3 P5. backchain bisim_transitive_.
assert bisim_up_to bisim_context_t P5 Q7.
Lem : apply bisim_context_substitutive. Lem : case Lem.
case H22. backchain Lem.
assert bisim_up_to refl_t Q7 Q6.
apply bisim_symmetric_ to H24. backchain bisim_transitive_.
backchain CH.
% from Q
intros.
case H4. apply H7 to H5. case H3. apply H12 to H8. case H2. apply H17 to H13.
clear H6 H7 H11 H12 H16 H17. case H9. case H19.
witness P6. split. search.
witness P6. witness Q3. split. search.
case H14. case H21.
assert bisim_up_to refl_t P6 P7. backchain bisim_transitive_.
assert bisim_up_to bisim_context_t P7 Q5.
Lem : apply bisim_context_substitutive. Lem : case Lem.
case H22. backchain Lem.
assert bisim_up_to refl_t Q5 Q3.
apply bisim_symmetric_ to H24. backchain bisim_transitive_.
backchain CH.
Theorem bisim_context_sound_snd : is_sound_snd bisim_context_t.
unfold. intros.
witness P. witness Q. split.
backchain bisim_reflexive_.
search.
backchain bisim_reflexive_.
Theorem bisim_context_sound : is_sound bisim_context_t.
unfold. intros.
Snd : apply bisim_context_sound_snd. Snd : case Snd.
Fst : apply bisim_context_sound_fst. Fst : case Fst.
apply Snd to H1. backchain Fst.