Kind name,action,proc type.
Import "ccs_bisim_context".
Import "ccs_ctx".
Import "ccs_bisim_examples_helper".
Theorem bisim_context_reflexive_ : forall P,
bisim_up_to bisim_context_t P P.
coinduction. intros. unfold.
intros.
witness P1. split. search.
witness P1. witness P1. split.
unfold. witness P1. witness P1. split.
unfold.
backchain bisim_reflexive_.
backchain bisim_reflexive_.
search.
backchain CH.
intros.
witness Q1. split. search.
witness Q1. witness Q1. split.
unfold. witness Q1. witness Q1. split.
unfold.
backchain bisim_reflexive_.
backchain bisim_reflexive_.
search.
backchain CH.
Theorem bisim_repl_absorb : forall P,
bisim_up_to refl_t (par (repl P) P) (repl P).
Sound : apply bisim_context_sound. Sound : case Sound.
intros. backchain Sound. clear Sound.
coinduction. intros. unfold.
intros. case H1.
case H2.
witness (par (repl P) Q). split. search.
witness (par (repl P) P).
witness (repl P). split. unfold.
witness (par (par (repl P) P) Q).
witness (par (repl P) Q). split. unfold.
backchain bisim_par_assoc_left.
backchain bisim_reflexive_.
search.
backchain CH.
witness (par (repl P) (par Q R)). split. search.
witness (par (repl P) P).
witness (repl P). split. unfold.
witness (par (par (repl P) P) (par Q R)).
witness (par (repl P) (par Q R)). split. unfold.
backchain bisim_par_assoc_left.
backchain bisim_reflexive_.
search.
backchain CH.
witness (par (repl P) Q1). split. search.
witness (par (repl P) Q1).
witness (par (repl P) Q1). split. unfold.
witness (par (repl P) Q1).
witness (par (repl P) Q1). split. unfold.
backchain bisim_reflexive_.
backchain bisim_reflexive_.
search.
backchain bisim_context_reflexive_.
case H2.
witness (par (repl P) (par Q Q1)). split. search.
witness (par (repl P) (par Q Q1)).
witness (par (repl P) (par Q Q1)). split. unfold.
witness (par (repl P) (par Q Q1)).
witness (par (repl P) (par Q Q1)). split. unfold.
backchain bisim_par_assoc.
backchain bisim_reflexive_.
search.
backchain bisim_context_reflexive_.
case H2.
witness (par (repl P) (par Q1 Q)). split. search.
witness (par (repl P) (par Q1 Q)).
witness (par (repl P) (par Q1 Q)). split. unfold.
witness (par (repl P) (par Q1 Q)).
witness (par (repl P) (par Q1 Q)). split. unfold.
apply bisim_par_comm with P = Q, Q = Q1.
apply bisim_par_subst_2 to H5 with R = (repl P).
apply bisim_par_assoc with P = (repl P), Q = Q, R = Q1.
backchain bisim_transitive_.
backchain bisim_reflexive_.
search.
backchain bisim_context_reflexive_.
intros. case H1.
witness (par (par (repl P) Q) P). split. search.
witness (par (repl P) P).
witness (repl P). split. unfold.
witness (par (par (repl P) P) Q).
witness (par (repl P) Q). split. unfold.
backchain bisim_par_assoc_left.
backchain bisim_reflexive_.
search.
backchain CH.
witness (par (par (repl P) (par Q R)) P). split. search.
witness (par (repl P) P).
witness (repl P). split. unfold.
witness (par (par (repl P) P) (par Q R)).
witness (par (repl P) (par Q R)). split. unfold.
backchain bisim_par_assoc_left.
backchain bisim_reflexive_.
search.
backchain CH.
%%% !(a.P + b.Q) ~ (!a.P | !b.Q)
Theorem ex_bang_plus_ctx : forall P,
bisim (repl (plus (act (dn a) P) (act (dn b) P)))
(par (repl (act (dn a) P)) (repl (act (dn b) P))).
Sound : apply bisim_context_sound. Sound : case Sound.
intros. unfold. backchain Sound. clear Sound.
coinduction. intros. unfold.
intros. case H1.
case H2.
case H3.
witness (par (par (repl (act (dn a) P)) P) (repl (act (dn b) P))). split. search.
witness (repl (plus (act (dn a) P) (act (dn b) P))).
witness (par (repl (act (dn a) P)) (repl (act (dn b) P))). split. unfold.
witness (par (repl (plus (act (dn a) P) (act (dn b) P))) P).
witness (par (par (repl (act (dn a) P)) (repl (act (dn b) P))) P). split. unfold.
backchain bisim_reflexive_.
apply bisim_par_comm with P = P, Q = (repl (act (dn b) Q)).
apply bisim_par_subst_2 to H4 with R = (repl (act (dn a) Q)).
apply bisim_par_assoc with P = (repl (act (dn a) Q)), Q = P, R = (repl (act (dn b) Q)).
apply bisim_par_assoc with P = (repl (act (dn a) Q)), Q = (repl (act (dn b) Q)), R = P.
apply bisim_transitive_ to H6 H5.
apply bisim_symmetric_ to H7.
apply bisim_transitive_ to H8 H9.
search.
search.
backchain CH.
case H3.
witness (par (repl (act (dn a) P)) (par (repl (act (dn b) P)) P)). split. search.
witness (repl (plus (act (dn a) P) (act (dn b) P))).
witness (par (repl (act (dn a) P)) (repl (act (dn b) P))). split. unfold.
witness (par (repl (plus (act (dn a) P) (act (dn b) P))) P).
witness (par (par (repl (act (dn a) P)) (repl (act (dn b) P))) P). split. unfold.
backchain bisim_reflexive_.
apply bisim_par_assoc with P = (repl (act (dn a) Q)), Q = (repl (act (dn b) Q)), R = Q.
backchain bisim_symmetric_.
search.
backchain CH.
case H2.
case H4.
case H4.
intros. case H1.
case H2.
case H3.
witness (par (repl (plus (act (dn a) P) (act (dn b) P))) P). split. search.
witness (repl (plus (act (dn a) P) (act (dn b) P))).
witness (par (repl (act (dn a) P)) (repl (act (dn b) P))). split. unfold.
witness (par (repl (plus (act (dn a) P) (act (dn b) P))) P).
witness (par (par (repl (act (dn a) P)) (repl (act (dn b) P))) P). split. unfold.
backchain bisim_reflexive_.
apply bisim_par_comm with P = Q, Q = (repl (act (dn b) Q)).
apply bisim_par_subst_2 to H4 with R = (repl (act (dn a) Q)).
apply bisim_par_assoc with P = (repl (act (dn a) Q)), Q = Q, R = (repl (act (dn b) Q)).
apply bisim_par_assoc with P = (repl (act (dn a) Q)), Q = (repl (act (dn b) Q)), R = Q.
apply bisim_transitive_ to H6 H5.
apply bisim_symmetric_ to H7.
apply bisim_transitive_ to H8 H9.
search.
search.
backchain CH.
case H3.
case H2.
case H3.
witness (par (repl (plus (act (dn a) P) (act (dn b) P))) P). split. search.
witness (repl (plus (act (dn a) P) (act (dn b) P))).
witness (par (repl (act (dn a) P)) (repl (act (dn b) P))). split. unfold.
witness par (repl (plus (act (dn a) P) (act (dn b) P))) Q.
witness par (par (repl (act (dn a) P)) (repl (act (dn b) P))) Q. split. unfold.
backchain bisim_reflexive_.
apply bisim_par_assoc with P = (repl (act (dn a) P)), Q = (repl (act (dn b) P)), R = Q.
backchain bisim_symmetric_.
search.
backchain CH.
case H3.
case H2.
case H4.
case H3.
case H4.
%%% !!a.P ~ !a.P
Theorem ex_bang_bang_ctx : forall P,
bisim (repl (repl (act (dn a) P)))
(repl (act (dn a) P)).
Sound : apply bisim_context_sound. Sound : case Sound. intros.
unfold. backchain Sound. clear Sound.
coinduction. intros. unfold.
intros. case H1.
case H2.
case H3.
witness (par (repl (act (dn a) P)) P). split. search.
witness (repl (repl (act (dn a) P))).
witness (repl (act (dn a) P)). split. unfold.
witness (par (repl (repl (act (dn a) P))) P).
witness (par (repl (act (dn a) P)) P). split. unfold.
apply bisim_repl_absorb with P = (repl (act (dn a) P)).
apply bisim_par_subst_1 to H4 with R = P.
apply bisim_par_assoc with P = (repl (repl (act (dn a) P))), Q = (repl (act (dn a) P)), R = P.
apply bisim_symmetric_ to H6.
apply bisim_transitive_ to H7 H5.
search.
backchain bisim_reflexive_.
search.
backchain CH.
case H3.
case H2.
case H4.
intros. case H1.
case H2.
witness (par (repl (repl (act (dn a) P))) (par (repl (act (dn a) P)) P)). split. search.
witness (repl (repl (act (dn a) P))).
witness (repl (act (dn a) P)). split. unfold.
witness (par (repl (repl (act (dn a) P))) P).
witness (par (repl (act (dn a) P)) P). split. unfold.
apply bisim_repl_absorb with P = (repl (act (dn a) P)).
apply bisim_par_subst_1 to H3 with R = P.
apply bisim_par_assoc with P = (repl (repl (act (dn a) P))), Q = (repl (act (dn a) P)), R = P.
apply bisim_symmetric_ to H5.
apply bisim_transitive_ to H6 H4.
search.
backchain bisim_reflexive_.
search.
backchain CH.
case H2.