Kind name,action,proc type.
Import "ccs_bisim".
Import "ccs_ctx".
Import "ccs_bisim_examples_helper".
%%% !(a + b) ~ (!a | !b)
Theorem ex_bang_plus :
bisim (repl (plus (act (dn a) null) (act (dn b) null)))
(par (repl (act (dn a) null)) (repl (act (dn b) null))).
Sound : apply bisim_sound. Sound : case Sound.
unfold. backchain Sound. clear Sound.
coinduction. intros. unfold.
intros. case H1.
case H2.
case H3.
witness par (par (repl (act (dn a) null)) null) (repl (act (dn b) null)). split. search.
witness repl (plus (act (dn a) null) (act (dn b) null)).
witness par (repl (act (dn a) null)) (repl (act (dn b) null)). split.
unfold. backchain bisim_par_null.
backchain bisim_par_subst_1. backchain bisim_par_null.
backchain CH.
case H3.
witness par (repl (act (dn a) null)) (par (repl (act (dn b) null)) null). split. search.
witness repl (plus (act (dn a) null) (act (dn b) null)).
witness par (repl (act (dn a) null)) (repl (act (dn b) null)). split.
unfold. backchain bisim_par_null.
backchain bisim_par_subst_2. backchain bisim_par_null.
backchain CH.
case H2.
case H4.
case H4.
intros. case H1.
case H2.
case H3.
witness par (repl (plus (act (dn a) null) (act (dn b) null))) null. split. search.
witness repl (plus (act (dn a) null) (act (dn b) null)).
witness par (repl (act (dn a) null)) (repl (act (dn b) null)). split.
unfold. backchain bisim_par_null.
backchain bisim_par_subst_1. backchain bisim_par_null.
backchain CH.
case H3.
case H2.
case H3.
witness par (repl (plus (act (dn a) null) (act (dn b) null))) null. split. search.
witness repl (plus (act (dn a) null) (act (dn b) null)).
witness par (repl (act (dn a) null)) (repl (act (dn b) null)). split.
unfold. backchain bisim_par_null.
backchain bisim_par_subst_2. backchain bisim_par_null.
backchain CH.
case H3.
case H2. case H4.
case H3. case H4.
%%% !!a ~ !a
Import "ccs_bisim_context_examples".
%%% This is needed for: bisim_repl_absorb : forall P, bisim_up_to refl_t (par (repl P) P) (repl P)
Theorem ex_bang_bang :
bisim (repl (repl (act (dn a) null)))
(repl (act (dn a) null)).
Sound : apply bisim_sound. Sound : case Sound.
unfold. backchain Sound. clear Sound.
coinduction. intros. unfold.
intros. case H1.
case H2.
case H3.
witness (par (repl (act (dn a) null)) null). split. search.
witness (repl (repl (act (dn a) null))).
witness (repl (act (dn a) null)). split. unfold.
apply bisim_par_null with P = (repl (act (dn a) null)).
apply bisim_par_subst_2 to H4 with R = (repl (repl (act (dn a) null))).
apply bisim_repl_absorb with P = (repl (act (dn a) null)).
backchain bisim_transitive_.
backchain bisim_par_null.
backchain CH.
case H3.
case H2.
case H4.
intros. case H1.
case H2.
witness (par (repl (repl (act (dn a) null))) (par (repl (act (dn a) null)) null)). split. search.
witness (repl (repl (act (dn a) null))).
witness (repl (act (dn a) null)). split. unfold.
apply bisim_par_null with P = (repl (act (dn a) null)).
apply bisim_par_subst_2 to H3 with R = (repl (repl (act (dn a) null))).
apply bisim_repl_absorb with P = (repl (act (dn a) null)).
backchain bisim_transitive_.
backchain bisim_par_null.
backchain CH.
case H2.