# ccs.thm

%% Results on CCS %% %% Many of these are taken from Alwen Tiu's PhD thesis Specification "ccs". Theorem mu_id_step_absurd : forall A Q, {step (mu x\ x) A Q} -> false. induction on 1. intros. case H1. apply IH to H2. CoDefine sim : proc -> proc -> prop by sim P Q := forall A P1, {step P A P1} -> exists Q1, {step Q A Q1} /\ sim P1 Q1. Theorem sim_mu_par_ext : forall Q Q1, {step Q a (par Q Q1)} -> sim (mu x\ out a x) Q. coinduction. intros. unfold. intros. case H2. case H3. assert {step (par Q Q1) a (par (par Q Q1) Q1)}. apply CH to H4. search. Theorem sim_mu_par : sim (mu x\ out a x) (mu x\ par (out a x) (out a x)). apply sim_mu_par_ext to _ with Q = (mu x\ par (out a x) (out a x)). search. Theorem sim_refl : forall P, sim P P. coinduction. intros. unfold. intros. apply CH with P = P1. search. Theorem sim_trans : forall P Q R, sim P Q -> sim Q R -> sim P R. coinduction. intros. unfold. intros. case H1. apply H4 to H3. case H2. apply H7 to H5. apply CH to H6 H9. search. CoDefine bisim : proc -> proc -> prop by bisim P Q := (forall A P1, {step P A P1} -> exists Q1, {step Q A Q1} /\ bisim P1 Q1) /\ (forall A Q1, {step Q A Q1} -> exists P1, {step P A P1} /\ bisim P1 Q1). Theorem bisim_refl : forall P, bisim P P. coinduction. intros. unfold. intros. apply CH with P = P1. search. intros. apply CH with P = Q1. search. Theorem bisim_sym : forall P Q, bisim P Q -> bisim Q P. coinduction. intros. case H1. unfold. intros. apply H3 to H4. apply CH to H6. search. intros. apply H2 to H4. apply CH to H6. search. Theorem bisim_trans : forall P Q R, bisim P Q -> bisim Q R -> bisim P R. coinduction. intros. case H1. case H2. unfold. intros. apply H3 to H7. apply H5 to H8. apply CH to H9 H11. search. intros. apply H6 to H7. apply H4 to H8. apply CH to H11 H9. search.