Kind name,label,proc type.
Set subgoals off.
Import "pic_core".
%%% Bisimulation up to bisimilarity
Define bisim_t : proc -> proc -> proc -> proc -> prop by
bisim_t P1 P2 Q1 Q2 :=
bisim_up_to refl_t P1 P2 /\ bisim_up_to refl_t Q1 Q2.
Define is_sound_fst : (proc -> proc -> proc -> proc -> prop) -> prop by
is_sound_fst Tech := forall P Q,
(exists R S, bisim_up_to refl_t P R /\ bisim_up_to Tech R S /\ bisim_up_to refl_t S Q)
-> bisim_up_to refl_t P Q.
Define is_sound_snd : (proc -> proc -> proc -> proc -> prop) -> prop by
is_sound_snd Tech := forall P Q, bisim_up_to Tech P Q ->
exists R S, bisim_up_to refl_t P R /\ bisim_up_to Tech R S /\ bisim_up_to refl_t S Q.
Theorem bisim_t_reflexive : forall P, bisim_t P P P P.
intros. unfold. backchain bisim_reflexive. backchain bisim_reflexive.
Theorem bisim_sound_fst : is_sound_fst bisim_t.
unfold. coinduction. intros. case H1.
rename H2 to Left. rename H3 to Middle. rename H4 to Right.
unfold.
intros Pstep.
Left1 : case Left. Rstep : apply Left1 to *Pstep.
clear Left1 Left2 Left3 Left4 Left5 Left6.
Middle1 : case Middle. Sstep : apply Middle1 to *Rstep.
clear Middle1 Middle2 Middle3 Middle4 Middle5 Middle6.
Right1 : case Right. Qstep : apply Right1 to *Sstep.
clear Right1 Right2 Right3 Right4 Right5 Right6.
witness Q5. split. search. clear Qstep.
witness P1. witness Q5. split. search.
case Rstep1. case Qstep1. Sstep1 : case Sstep1.
Link1 : apply bisim_transitive to *Rstep2 *Sstep1.
Link1 : apply bisim_symmetric to *Sstep3.
Link1 : apply bisim_transitive to *Link2 *Qstep2.
backchain CH.
intros Pstep.
Left1 : case Left. Rstep : apply Left2 to *Pstep.
clear Left1 Left2 Left3 Left4 Left5 Left6.
Middle1 : case Middle. Sstep : apply Middle2 to *Rstep.
clear Middle1 Middle2 Middle3 Middle4 Middle5 Middle6.
Right1 : case Right. Qstep : apply Right2 to *Sstep.
clear Right1 Right2 Right3 Right4 Right5 Right6.
witness Q5. split. search. clear Qstep.
witness P1. witness Q5. intros. split. search.
Before : apply *Rstep1 with N = N. Eq1 : case Before.
Tech : apply *Sstep1 with N = N. Bis1 : case Tech.
After : apply *Qstep1 with N = N. Eq1 : case After.
Before : apply bisim_eq_1R to *Before1 *Eq2.
Before : apply bisim_eq_2R to *Before *Eq1.
Before : apply bisim_transitive to *Before *Bis1.
After : apply bisim_eq_2R to *After1 *Eq3.
Link : apply bisim_symmetric to *Bis2.
Link : apply bisim_eq_2L to *Link *Eq4.
After : apply bisim_transitive to *Link *After.
backchain CH.
intros Pstep.
Left1 : case Left. Rstep : apply Left3 to *Pstep.
clear Left1 Left2 Left3 Left4 Left5 Left6.
Middle1 : case Middle. Sstep : apply Middle3 to *Rstep.
clear Middle1 Middle2 Middle3 Middle4 Middle5 Middle6.
Right1 : case Right. Qstep : apply Right3 to *Sstep.
clear Right1 Right2 Right3 Right4 Right5 Right6.
witness Q5. split. search. clear Qstep.
witness P1. witness Q5. intros. split. search.
case Rstep1. case Qstep1. Tech1 : case Sstep1.
Before : apply bisim_transitive to *Rstep2 *Tech1.
After : apply bisim_symmetric to *Tech2.
After : apply bisim_transitive to *After *Qstep2.
backchain CH.
intros Qstep.
Right1 : case Right. Sstep : apply Right4 to *Qstep.
clear Right1 Right2 Right3 Right4 Right5 Right6.
Middle1 : case Middle. Rstep : apply Middle4 to *Sstep.
clear Middle1 Middle2 Middle3 Middle4 Middle5 Middle6.
Left1 : case Left. Pstep : apply Left4 to *Rstep.
clear Left1 Left2 Left3 Left4 Left5 Left6.
witness P5. split. search. clear Pstep.
witness P5. witness Q1. split. search.
case Sstep1. case Pstep1. Tech1 : case Rstep1.
Before : apply bisim_transitive to *Pstep2 *Tech1.
Link : apply bisim_symmetric to *Tech2.
After : apply bisim_transitive to *Link *Sstep2.
backchain CH.
intros Qstep.
Right1 : case Right. Sstep : apply Right5 to *Qstep.
clear Right1 Right2 Right3 Right4 Right5 Right6.
Middle1 : case Middle. Rstep : apply Middle5 to *Sstep.
clear Middle1 Middle2 Middle3 Middle4 Middle5 Middle6.
Left1 : case Left. Pstep : apply Left5 to *Rstep.
clear Left1 Left2 Left3 Left4 Left5 Left6.
witness P5. split. search. clear Pstep.
witness P5. witness Q1. intros. split. search.
After : apply *Sstep1 with N = N. Eq1 : case After.
Link : apply *Rstep1 with N = N. Bis1 : case Link.
Before : apply *Pstep1 with N = N. Eq1 : case Before.
Before : apply bisim_eq_1R to *Before1 *Eq4.
Before : apply bisim_eq_2R to *Before *Eq3.
Before : apply bisim_transitive to *Before *Bis1.
Bis2 : apply bisim_symmetric to *Bis2.
Bis2 : apply bisim_eq_2L to *Bis2 *Eq2.
After : apply bisim_eq_2R to *After1 *Eq1.
After : apply bisim_transitive to *Bis2 *After.
backchain CH.
intros Qstep.
Right1 : case Right. Sstep : apply Right6 to *Qstep.
clear Right1 Right2 Right3 Right4 Right5 Right6.
Middle1 : case Middle. Rstep : apply Middle6 to *Sstep.
clear Middle1 Middle2 Middle3 Middle4 Middle5 Middle6.
Left1 : case Left. Pstep : apply Left6 to *Rstep.
clear Left1 Left2 Left3 Left4 Left5 Left6.
witness P5. split. search. clear Pstep.
witness P5. witness Q1. intros. split. search.
case Sstep1. case Pstep1. Tech1 : case Rstep1.
Before : apply bisim_transitive to *Pstep2 *Tech1.
Tech2 : apply bisim_symmetric to *Tech2.
After : apply bisim_transitive to *Tech2 *Sstep2.
backchain CH.
Theorem bisim_sound_snd : is_sound_snd bisim_t.
unfold. intros.
witness P. witness Q. split.
backchain bisim_reflexive.
search.
backchain bisim_reflexive.
Theorem bisim_sound : is_sound bisim_t.
Fst : apply bisim_sound_fst. Fst : case Fst.
Snd : apply bisim_sound_snd. Snd : case Snd.
unfold. intros PQ.
apply *Snd to *PQ. backchain Fst.