Abella logo (small)

pic_core.thm

%%% Bisimilarity-up-to for the synchronous pi-calculus %%% %%% %%% For more details, please see the paper: %%% %%% "A lightweight formalization of the meta-theory of %%% bisimulation-up-to" by K. Chaudhuri, M. Cimini, and %%% D. Miller, 2014 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Processes Kind name,proc type. %% action prefixes Type taup proc -> proc. Type inp name -> (name -> proc) -> proc. Type oup name -> name -> proc -> proc. %% name restriction Type nu (name -> proc) -> proc. %% replication Type repl proc -> proc. %% core process algebra Type plus, par proc -> proc -> proc. Type null proc. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Labels of the LTS Kind label type. Type tau label. Type up, dn name -> name -> label. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% The steps of the LTS % The steps are defined by a mutually inductive definition of a relation % one for closed steps and oneb for bound steps, i.e., steps that contain % a name that is restricted (nu) or bound (inp) in an outer scope. Define one : proc -> label -> proc -> prop, oneb : proc -> (name -> label) -> (name -> proc) -> prop by /* internal steps */ ; one (taup P) tau P /* closed output */ ; one (oup X Y P) (up X Y) P /* core process algebra */ ; one (plus P Q) L R := one P L R ; one (plus P Q) L R := one Q L R ; one (par P Q) L (par R Q) := one P L R ; one (par P Q) L (par P R) := one Q L R ; one (repl P) L (par (repl P) R) := one P L R ; one (nu P) L (nu Q) := nabla x, one (P x) L (Q x) /* closed communication */ ; one (par P Q) tau (par PP QQ) := /* case of P getting input */ (exists X Y R, oneb P (dn X) R /\ one Q (up X Y) QQ /\ PP = R Y) /* case of Q getting input */ \/ (exists X Y R, one P (up X Y) PP /\ oneb Q (dn X) R /\ QQ = R Y) /* internal closed communication in a replicated process */ ; one (repl P) tau (par (repl P) (par PP QQ)) := exists X Y R, one P (up X Y) PP /\ oneb P (dn X) R /\ QQ = R Y /* bound communication */ ; one (par P Q) tau (nu y\ par (PP y) (QQ y)) := /* case of P getting input */ (exists X, oneb P (dn X) PP /\ oneb Q (up X) QQ) /* case of Q getting input */ \/ (exists X, oneb P (up X) PP /\ oneb Q (dn X) QQ) /* internal bound communication in a replicated process */ ; one (repl P) tau (par (repl P) (nu y\ par (PP y) (QQ y))) := exists X, oneb P (up X) PP /\ oneb P (dn X) QQ /* bound output */ ; oneb (nu P) (up X) R := nabla y, one (P y) (up X y) (R y) /* bound input */ ; oneb (inp X P) (dn X) P /* core process algebra for bound labels */ ; oneb (plus P Q) L R := oneb P L R ; oneb (plus P Q) L R := oneb Q L R ; oneb (par P Q) L (x\ par (R x) Q) := oneb P L R ; oneb (par P Q) L (x\ par P (R x)) := oneb Q L R ; oneb (repl P) L (x\ par (repl P) (R x)) := oneb P L R ; oneb (nu P) L (y\ nu x\ R x y) := nabla x, oneb (P x) L (R x). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Bisimilarity-up-to CoDefine bisim_up_to : (proc -> proc -> proc -> proc -> prop) -> proc -> proc -> prop by bisim_up_to Tech P Q := (forall L P1, one P L P1 -> exists Q1, one Q L Q1 /\ exists P2 Q2, Tech P1 P2 Q1 Q2 /\ bisim_up_to Tech P2 Q2) /\ (forall X P1, oneb P (dn X) P1 -> exists Q1, oneb Q (dn X) Q1 /\ exists P2 Q2, forall N, Tech (P1 N) (P2 N) (Q1 N) (Q2 N) /\ bisim_up_to Tech (P2 N) (Q2 N)) /\ (forall X P1, oneb P (up X) P1 -> exists Q1, oneb Q (up X) Q1 /\ exists P2 Q2, nabla x, Tech (P1 x) (P2 x) (Q1 x) (Q2 x) /\ bisim_up_to Tech (P2 x) (Q2 x)) /\ (forall L Q1, one Q L Q1 -> exists P1, one P L P1 /\ exists P2 Q2, Tech P1 P2 Q1 Q2 /\ bisim_up_to Tech P2 Q2) /\ (forall X Q1, oneb Q (dn X) Q1 -> exists P1, oneb P (dn X) P1 /\ exists P2 Q2, forall N, Tech (P1 N) (P2 N) (Q1 N) (Q2 N) /\ bisim_up_to Tech (P2 N) (Q2 N)) /\ (forall X Q1, oneb Q (up X) Q1 -> exists P1, oneb P (up X) P1 /\ exists P2 Q2, nabla x, Tech (P1 x) (P2 x) (Q1 x) (Q2 x) /\ bisim_up_to Tech (P2 x) (Q2 x)). Define refl_t : proc -> proc -> proc -> proc -> prop by refl_t P P Q Q. Define is_sound : (proc -> proc -> proc -> proc -> prop) -> prop by is_sound Tech := forall P Q, bisim_up_to Tech P Q -> bisim_up_to refl_t P Q. Theorem bisim_reflexive : forall P, bisim_up_to refl_t P P. coinduction. intros. unfold. intros. witness P1. split. search. witness P1. witness P1. split. search. backchain CH. intros. witness P1. split. search. witness P1. witness P1. intros. split. search. backchain CH. intros. witness P1. split. search. witness P1. witness P1. intros. split. search. backchain CH. intros. witness Q1. split. search. witness Q1. witness Q1. intros. split. search. backchain CH. intros. witness Q1. split. search. witness Q1. witness Q1. intros. split. search. backchain CH. intros. witness Q1. split. search. witness Q1. witness Q1. intros. split. search. backchain CH. Theorem bisim_eq_1L : forall P1 P2 Q, bisim_up_to refl_t P1 Q -> P1 = P2 -> bisim_up_to refl_t P2 Q. intros. case H2. search. Theorem bisim_eq_1R : forall P1 P2 Q, bisim_up_to refl_t P2 Q -> P1 = P2 -> bisim_up_to refl_t P1 Q. intros. case H2. search. Theorem bisim_eq_2L : forall P Q1 Q2, bisim_up_to refl_t P Q1 -> Q1 = Q2 -> bisim_up_to refl_t P Q2. intros. case H2. search. Theorem bisim_eq_2R : forall P Q1 Q2, bisim_up_to refl_t P Q2 -> Q1 = Q2 -> bisim_up_to refl_t P Q1. intros. case H2. search. Theorem bisim_symmetric : forall P Q, bisim_up_to refl_t P Q -> bisim_up_to refl_t Q P. coinduction. intros. Bis1 : case H1. unfold. clear Bis1 Bis2 Bis3 Bis5 Bis6. intros. apply *Bis4 to *H2. witness P2. split. search. witness P1. witness P2. case H4. split. search. backchain CH. clear Bis1 Bis2 Bis3 Bis4 Bis6. intros. apply Bis5 to H2. witness P2. split. search. witness P1. witness P2. intros. apply *H4 with N = N. case H5. split. search. backchain CH. apply bisim_eq_1R to *H6 *H8. apply bisim_eq_2R to *H9 *H7. search. clear Bis1 Bis2 Bis3 Bis4 Bis5. intros. apply Bis6 to H2. witness P2. split. search. witness P1. witness P2. intros. case H4. split. search. backchain CH. clear Bis2 Bis3 Bis4 Bis5 Bis6. intros. apply Bis1 to H2. witness Q2. split. search. witness Q2. witness Q1. case H4. split. search. backchain CH. clear Bis1 Bis3 Bis4 Bis5 Bis6. intros. apply Bis2 to H2. witness Q2. split. search. witness Q2. witness Q1. intros. apply *H4 with N = N. case H5. split. search. backchain CH. apply bisim_eq_1R to *H6 *H8. apply bisim_eq_2R to *H9 *H7. search. clear Bis1 Bis2 Bis4 Bis5 Bis6. intros. apply Bis3 to H2. witness Q2. split. search. witness Q2. witness Q1. intros. case H4. split. search. backchain CH. Theorem bisim_transitive : forall P Q R, bisim_up_to refl_t P Q -> bisim_up_to refl_t Q R -> bisim_up_to refl_t P R. coinduction. intros. Left1 : case H1. Right1 : case H2. unfold. intros. apply Left1 to *H3. apply Right1 to *H4. witness Q1. split. search. witness P1. witness Q1. split. search. case H5. case H8. backchain CH. intros. apply Left2 to *H3. apply Right2 to *H4. witness Q1. split. search. witness P1. witness Q1. intros. split. search. apply *H5 with N = N. apply *H7 with N = N. case H8. case H10. apply bisim_eq_1R to *H9 *H13. apply bisim_eq_2R to *H16 *H12. apply *bisim_eq_2L to *H17 *H15. apply bisim_eq_2R to *H11 *H14. backchain CH. intros. apply Left3 to *H3. apply Right3 to *H4. witness Q1. split. search. witness P1. witness Q1. intros. split. search. case H5. case H8. backchain CH. intros. apply Right4 to *H3. apply Left4 to *H4. witness P1. split. search. witness P1. witness Q1. split. search. case H5. case H8. backchain CH. intros. apply Right5 to *H3. apply Left5 to *H4. witness P1. split. search. witness P1. witness Q1. intros. split. search. apply *H5 with N = N. apply *H7 with N = N. case H8. case H10. apply bisim_eq_1R to *H9 *H13. apply bisim_eq_2R to *H16 *H12. apply bisim_eq_1R to *H11 *H15. apply bisim_eq_2R to *H18 *H14. backchain CH. intros. apply Right6 to *H3. apply Left6 to *H4. witness P1. split. search. witness P1. witness Q1. intros. split. search. case H5. case H8. backchain CH.