Specification "processes_terms".
Define trans : pt -> (pt -> pt) -> prop by
nabla x, trans x (out x)
; trans (app U V) a\nu b\nu x\par (P b) (par (out2 b x a) (in x Q))
:= trans U P /\ trans V Q
; trans (abs U) a\in2 a P := nabla x, trans (U x) (P x)
; trans (subex U V) a\nu x\par (P x a) (in x Q)
:= (nabla y, trans (U y) (P y)) /\ trans V Q.
Theorem trans_fonc : forall U P Q,
trans U P -> trans U Q -> P = Q.
induction on 1. intros. case H1.
case H2. search.
case H2. apply IH to H3 H5. apply IH to H4 H6. search.
case H2. apply IH to H3 H4. search.
case H2. apply IH to H3 H5. apply IH to H4 H6. search.