Abella logo (small)

trans_is_bisimulation.thm

Specification "processes_terms". Import "trans". Import "picalc". Import "lsc". /*** 1. simulation of beta at a distance by tensor reduction ***/ Theorem lemma_red_tensor_simulates_red_db : forall U V W P Q R2, red_db_ker U V W -> trans U P -> trans V Q -> trans W R2 -> exists R1, nabla b y z, red_ker_tensor (P b) (par (out2 b y z) (in y Q)) (R1 y z) /\ str_eq (nu (y\R1 y z)) (R2 z). induction on 1. intros. case H1. case H2. case H4. apply trans_fonc to *H3 *H7. apply trans_fonc to *H5 *H6. search. case H2. case H4. apply trans_fonc to *H7 *H9. apply IH to *H5 *H6 *H3 *H8. exists y\z\nu (x\par (R1 x y z) (in x Q2)). intros. split. search. unfold 20. exists nu (x\nu (y\par (R1 x y n3) (in x Q2))). search. Theorem red_tensor_simulates_evc_red_db: forall U V P Q2, evc_cl red_db U V -> trans U P -> trans V Q2 -> exists Q1, nabla a, red_tensor (P a) (Q1 a) /\ str_eq (Q2 a) (Q1 a). induction on 1. intros. case H1. case H4. case H2. apply lemma_red_tensor_simulates_red_db to H5 H6 H7 H3. exists a\nu b\nu x\R1 x a. intros. split. search. unfold 20. exists nu (y\R1 y n1). split. backchain str_eq_sym. backchain nu_gen. case H2. case H3. apply trans_fonc to H6 *H8. apply IH to H4 H5 H7. search. case H2. case H3. apply trans_fonc to H6 *H8. apply IH to H4 H5 H7. search. /*** 2. simulation of linear substitution by exponential reduction***/ Theorem lemma_red_exp_simulates_red_ls : forall U W V P R Q2, nabla y, red_ls_ker W U V -> trans W R -> trans (U y) (P y) -> trans (V y) (Q2 y) -> exists Q1, nabla a y, red_ker_exp (P y a) (in y R) (Q1 y a) /\ str_eq (Q1 y a)(par (Q2 y a) (in y R)). induction on 1. intros. case H1. case H3. apply trans_fonc to H2 H4. search. case H3. case H4. apply trans_fonc to H7 H9. apply IH to H5 H2 H6 H8. exists y\a\nu (b\nu (x\par (Q3 y b) (par (out2 b x a) (in x (Q1 y))))). intros. split. search. backchain 0 str_eq_sym. unfold 20. exists nu (b\par (nu (x\par (P2 n2 b) (par (out2 b x n1) (in x (Q1 n2))))) (in n2 R)). split. search. unfold 20. exists nu (b\nu (x\par (par (P2 n2 b) (par (out2 b x n1) (in x (Q1 n2)))) (in n2 R))). split. search. unfold 17. intros. unfold 17. intros. unfold 20. exists par (P2 n2 n3) (par (par (out2 n3 n4 n1) (in n4 (Q1 n2))) (in n2 R)). split. search. unfold 20. exists par (P2 n2 n3) (par (in n2 R) (par (out2 n3 n4 n1) (in n4 (Q1 n2)))). split. search. unfold 20. exists par (par (P2 n2 n3) (in n2 R)) (par (out2 n3 n4 n1) (in n4 (Q1 n2))). split. search. unfold 18. backchain str_eq_sym. case H3. case H4. apply trans_fonc to H7 H9. apply IH to H5 _ _ _. exists y\a\nu (x\par (Q3 x y a) (in x (Q1 y))). intros. split. search. backchain 0 str_eq_sym. unfold 20. exists nu (x\par (par (P2 n2 x n1) (in x (Q1 n2))) (in n2 R)). split. search. unfold 17. intros. unfold 20. exists par (P2 n2 n3 n1) (par (in n3 (Q1 n2)) (in n2 R)). split. search. unfold 20. exists par (P2 n2 n3 n1) (par (in n2 R) (in n3 (Q1 n2))). split. search. unfold 20. exists par (par (P2 n2 n3 n1) (in n2 R)) (in n3 (Q1 n2)). split. search. unfold 18. backchain str_eq_sym. Theorem red_exp_simulates_red_ls : forall U V P Q2, evc_cl red_ls U V -> trans U P -> trans V Q2 -> exists Q1, nabla a, red_exp (P a) (Q1 a) /\ str_eq (Q1 a) (Q2 a). induction on 1. intros. case H1. case H4. case H2. case H3. apply trans_fonc to H7 *H9. apply lemma_red_exp_simulates_red_ls to H5 H7 H6 H8. search. case H2. case H3. apply trans_fonc to H6 H8. apply IH to H4 H5 H7. search. case H2. case H3. apply trans_fonc to H6 H8. apply IH to H4 H5 H7. search. /*** 3. converse simulation of beta at a distance ***/ Theorem lemma_red_db_simulates_red_tensor : forall U V P Q R Q1, nabla a b c, trans U P -> trans V R -> red_ker_tensor (out2 b c a) (P b) (Q b a c) -> str_eq (par (Q b a c) (in c R)) (Q1 b a c) -> exists W Q2, nabla a, red_db_ker U V W /\ trans W Q2 /\ str_eq (nu (z2\ nu (Q1 z2 a))) (Q2 a). induction on 1. intros. case H1. case H3. case H3. case H7. case H8. apply red_ker_tensor_out2_no_com_case to H9. case H9. case H10. case H10. case H3. exists subex U1 V. exists a\nu (x\par (P3 a x) (in x R)). intros. split. search. search. unfold 20. exists nu (z1\nu (z2\Q1 z2 n1 z1)). split. search. unfold 17. intros. unfold 20. exists nu (z2\par (P3 n1 n2) (in n2 R)). split. backchain str_eq_sym. backchain 0 str_eq_sym. backchain nu_gen. case H3. case H7. permute (n1 n4) H5. apply IH to *H5 *H2 *H8 _. exists subex W V1. exists a\nu (x\par (Q3 x a) (in x Q2)). intros. split. search. search. unfold 20. exists nu (z2\nu (z3\par (nu (z4\par (S z4 z2 n1 z3) (in z4 Q2))) (in z3 R))). split. backchain str_eq_sym. unfold 20. exists nu (z2\nu (z3\nu (z4\par (par (S z4 z2 n1 z3) (in z4 Q2)) (in z3 R)))). split. search. unfold 20. exists nu (z2\nu (z4\nu (z3\par (par (S z4 z2 n1 z3) (in z4 Q2)) (in z3 R)))). split. search. unfold 20. exists nu (z4\nu (z2\nu (z3\par (par (S z4 z2 n1 z3) (in z4 Q2)) (in z3 R)))). split. search. unfold 17. intros. unfold 20. exists nu (z2\nu (z3\par (S n2 z2 n1 z3) (par (in n2 Q2) (in z3 R)))). split. search. unfold 20. exists nu (z2\nu (z3\par (S n2 z2 n1 z3) (par (in z3 R) (in n2 Q2)))). split. search. unfold 20. exists nu (z2\nu (z3\par (par (S n2 z2 n1 z3) (in z3 R)) (in n2 Q2))). split. search. unfold 20. exists nu (z2\par (nu (z3\par (S n2 z2 n1 z3) (in z3 R))) (in n2 Q2)). split. search. unfold 20. exists par (nu (z2\nu (z3\par (S n2 z2 n1 z3) (in z3 R)))) (in n2 Q2). split. search. unfold 18. intros. search. case H8. Theorem red_db_simulates_red_tensor : forall U P Q1, nabla a, trans U P -> red_tensor (P a) (Q1 a) -> exists V Q2, nabla a, evc_cl red_db U V /\ trans V Q2 /\ str_eq (Q1 a) (Q2 a). induction on 1. intros. case H1. case H2. case H2. case H5. case H6. apply red_ker_tensor_par_sym to *H7. apply red_ker_tensor_par_cases to *H8. case H9. apply str_eq_sym to H11. apply lemma_red_db_simulates_red_tensor to H3 H4 H10 H12. search. apply red_ker_tensor_in_case to H10. apply red_tensor_no_new_names to H7. apply red_tensor_no_new_names to H7. apply IH to H3 H7. search. case H7. case H8. case H8. case H8. case H2. case H2. case H5. apply red_ker_tensor_par_sym to *H6. apply red_ker_tensor_in_case to H7. apply IH to H3 _. search. case H6. /*** 4. convere simulation of linear substitution ***/ Theorem lemma_red_ls_simulates_red_exp : forall P Q R1 U V, nabla x y, trans (U x) (P x) -> trans V Q -> red_ker_exp (P y x) (in y Q) (R1 y x) -> exists W R2, nabla x y, red_ls_ker V U W /\ trans (W y) (R2 y) /\ str_eq (R1 y x) (par (R2 y x) (in y Q)). induction on 1. intros. case H1. case H3. case H3. search. case H3. case H6. case H7. apply red_ker_exp_no_new_names to H8. apply red_ker_exp_no_new_names to H8. apply IH to H4 H2 _. exists z1\app (W z1) (V1 z1). exists y\a\nu (b\nu (x1\ par (R3 y b) (par (out2 b x1 a) (in x1 (Q1 y))))). intros. split. search. search. clear IH H2 H4 H5 H8 H9 H10. unfold 20. exists nu (b\par (nu (x1\par (R3 n2 b) (par (out2 b x1 n1) (in x1 (Q1 n2))))) (in n2 Q)). split. unfold 20. exists nu (b\nu (x1\par (par (R3 n2 b) (par (out2 b x1 n1) (in x1 (Q1 n2)))) (in n2 Q))). split. unfold 17. intros. unfold 17. intros. unfold 20. exists par (R3 n2 n3) (par (par (out2 n3 n4 n1) (in n4 (Q1 n2))) (in n2 Q)). split. unfold 20. exists par (R3 n2 n3) (par (in n2 Q) (par (out2 n3 n4 n1) (in n4 (Q1 n2)))). split. unfold 20. exists par (par (R3 n2 n3) (in n2 Q)) (par (out2 n3 n4 n1) (in n4 (Q1 n2))). split. unfold 18. search. search. search. search. search. search. case H8. case H9. case H9. case H3. case H3. case H6. apply IH to H4 H2 _. exists z1\subex (z2\W z2 z1) (V1 z1). exists y\a\nu (x\par (R2 x y a) (in x (Q1 y))). intros. split. search. search. clear IH H2 H4 H5 H7 H8 H9. unfold 20. exists nu (x\par (par (R2 x n2 n1) (in x (Q1 n2))) (in n2 Q)). split. unfold 17. intros. unfold 20. exists par (R2 n3 n2 n1) (par (in n3 (Q1 n2)) (in n2 Q)). split. unfold 20. exists par (R2 n3 n2 n1) (par (in n2 Q) (in n3 (Q1 n2))). split. unfold 20. exists par (par (R2 n3 n2 n1) (in n2 Q)) (in n3 (Q1 n2)). split. unfold 18. search. search. search. search. search. case H7. Theorem red_ls_simulates_red_exp : forall U P Q1, nabla a, trans U P -> red_exp (P a) (Q1 a) -> exists V Q2, nabla a, evc_cl red_ls U V /\ trans V Q2 /\ str_eq (Q1 a) (Q2 a). induction on 1. intros. case H1. case H2. case H2. case H5. case H6. apply red_ker_exp_par_sym to *H7. apply red_ker_exp_par_cases to *H8. case H9. apply red_ker_exp_out2_case to H10. apply red_ker_exp_in_no_com_case to H10. apply red_exp_no_new_names to H7. apply red_exp_no_new_names to H7. apply IH to H3 H7. search. case H7. case H8. case H8. case H8. case H2. case H2. case H5. apply lemma_red_ls_simulates_red_exp to H3 H4 H6. search. apply IH to H3 _. search. case H6.