# finite-pic-cong.thm

%% Simulation in the finite pi-calculus is a "pre-congruence" %% %% (a "pre-congruence" is a congruence without the symmetric relation %% requirement). %% %% It should be straightforward to extend this script to prove that %% (open) bisimulation is a congruence. %% %% Eventually, the adjective "finite" should be removed by allowing %% the bang operator in pi-calculus expressions. Specification "finite-pic". Import "finite-pic". Theorem sim_cong_null : sim null null. unfold. intros. case H1. intros. case H1. intros. case H1. Theorem sim_cong_taup : forall P Q, sim P Q -> sim (taup P) (taup Q). intros. unfold. intros. case H2. search. intros. case H2. intros. case H2. Theorem sim_cong_plus : forall P Q R S, sim P Q -> sim R S -> sim (plus P R) (plus Q S). intros. unfold. % Case 1: free action case and then two subcases: left and right of plus intros. case H3. case H1. apply H5 to H4. search. case H2. apply H5 to H4. search. % Case 2: bound input action case and then two subcases: left and right of plus intros. case H3. case H1. apply H6 to H4. search. case H2. apply H6 to H4. search. % Case 3: bound output action case and then two subcases: left and right of plus intros. case H3. case H1. apply H7 to H4. search. case H2. apply H7 to H4. search. Theorem sim_cong_match : forall P Q X Y, sim P Q -> sim (match X Y P) (match X Y Q). intros. unfold. intros. case H2. case H1. apply H4 to H3. search. intros. case H2. case H1. apply H5 to H3. search. intros. case H2. case H1. apply H6 to H3. search. Theorem sim_cong_out : forall P Q X Y, sim P Q -> sim (out X Y P) (out X Y Q). intros. unfold. intros. case H2. search. intros. case H2. intros. case H2. Theorem sim_cong_in : forall P Q X, (forall W, sim (P W) (Q W)) -> sim (in X P) (in X Q). intros. unfold. intros. case H2. intros. case H2. exists Q. split. search. intros. apply H1 with W = W. search. intros. case H2. % Now define an invariant inductively Define inv : proc -> proc -> prop by inv P Q := sim P Q ; inv (par P1 P2) (par Q1 Q2) := inv P1 Q1 /\ inv P2 Q2 ; inv (nu P) (nu Q) := nabla x, inv (P x) (Q x). % We could inline this since it only appears once. That is, the % simInv predicate is the result of applying the body of `sim' once % to inv. Define simInv : proc -> proc -> prop by simInv P Q := (forall A P1, {one P A P1} -> exists Q1, {one Q A Q1} /\ inv P1 Q1) /\ (forall X M, {oneb P (dn X) M} -> exists N, {oneb Q (dn X) N} /\ forall W, inv (M W) (N W)) /\ (forall X M, {oneb P (up X) M} -> exists N, {oneb Q (up X) N} /\ nabla w, inv (M w) (N w)). % We now show that 'inv' is a post-fixed point of simulation. Theorem inv_simInv : forall P Q, inv P Q -> simInv P Q. induction on 1. intros. case H1. % Subgoal 1: sim P Q case H2. unfold. intros. apply H3 to H6. search. intros. apply H4 to H6. exists N. split. search. intros. apply H8 with W = W. search. intros. apply H5 to H6. search. % Subgoal 2: P = P1|P2, Q = Q1|Q2, inv P1 Q1, inv P2 Q2 apply IH to H2. apply IH to H3. case H4. case H5. unfold. intros. case H12. apply H6 to H13. search. apply H9 to H13. search. apply H11 to H14. apply H7 to H13. exists (nu x\ par (N2 x) (N1 x)). split. search. apply H18 with W = n1. search. apply H8 to H13. apply H10 to H14. exists (nu x\ par (N1 x) (N2 x)). split. search. apply H18 with W = n1. search. apply H7 to H13. apply H9 to H14. exists (par (N Y) Q3). split. search. apply H16 with W = Y. search. apply H6 to H14. apply H10 to H13. exists (par Q3 (N Y)). apply H18 with W = Y. search. intros. case H12. apply H7 to H13. exists (x\ par (N x) Q2). split. search. intros. apply H15 with W = W. search. apply H10 to H13. exists (x\ par Q1 (N1 x)). split. search. intros. apply H15 with W = W. search. intros. case H12. apply H8 to H13. search. apply H11 to H13. search. % Subgoal 3: P = nu P1, Q = nu Q1, inv (P1 n1), inv (Q1 n1) apply IH to H2. case H3. unfold. intros. case H7. apply H4 to H8. search. intros. case H7. apply H5 to H8. exists (x\ nu y\ N y x). split. search. intros. apply H10 with W = W. search. intros. case H7. apply H6 to H8. search. apply H4 to H8. search. % We can now conclude that inv is a simulation. Theorem inv_sim : forall P Q, inv P Q -> sim P Q. coinduction. intros. apply inv_simInv to H1. case H2. unfold. intros. apply H3 to H6. apply CH to H8. search. intros. apply H4 to H6. exists N. split. search. intros. apply H8 with W = W. apply CH to H9. search. intros. apply H5 to H6. apply CH to H8. search. % The fact that inv is a post-fixed point is used to prove the final % two theorems regarding the pre-congruence of sim. Theorem sim_cong_par : forall P Q R S, sim P Q -> sim R S -> sim (par P R) (par Q S). intros. assert inv (par P R) (par Q S). apply inv_sim to H3. search. Theorem sim_cong_nu : forall P Q, nabla w, sim (P w) (Q w) -> sim (nu P) (nu Q). intros. assert inv (nu P) (nu Q). apply inv_sim to H2. search.