Abella logo (small)

finite-pic.thm

%% Simulation and bisimulation for the pi-calculus %% %% Given that the meta-logic of Abella is intuitionistic, the %% specification of bisimulation here corresponds to open bisimulation. %% %% Here we prove here that simulation is preorder and bisimulation is an %% equivalence relation. Specification "finite-pic". % Simulation defined CoDefine sim : proc -> proc -> prop by sim P Q := (forall A P1, {one P A P1} -> exists Q1, {one Q A Q1} /\ sim P1 Q1) /\ (forall X M, {oneb P (dn X) M} -> exists N, {oneb Q (dn X) N} /\ forall W, sim (M W) (N W)) /\ (forall X M, {oneb P (up X) M} -> exists N, {oneb Q (up X) N} /\ nabla w, sim (M w) (N w)). % Simulation is a preorder Theorem sim_refl : forall P, sim P P. coinduction. intros. unfold. intros. apply CH with P = P1. search. intros. exists M. split. search. intros. apply CH with P = M W. search. intros. exists M. split. search. intros. apply CH with P = M n1. search. Theorem sim_trans : forall P Q R, sim P Q -> sim Q R -> sim P R. coinduction. intros. case H1. case H2. unfold. intros. apply H3 to H9. apply H6 to H10. apply CH to H11 H13. search. intros. apply H4 to H9. apply H7 to H10. exists N1. split. search. intros. apply H11 with W = W. apply H13 with W = W. apply CH to H14 H15. search. intros. apply H5 to H9. apply H8 to H10. apply CH to H11 H13. search. % Bisimulation defined CoDefine bisim : proc -> proc -> prop by bisim P Q := (forall A P1, {one P A P1} -> exists Q1, {one Q A Q1} /\ bisim P1 Q1) /\ (forall X M, {oneb P (dn X) M} -> exists N, {oneb Q (dn X) N} /\ forall W, bisim (M W) (N W)) /\ (forall X M, {oneb P (up X) M} -> exists N, {oneb Q (up X) N} /\ nabla w, bisim (M w) (N w)) /\ (forall A Q1, {one Q A Q1} -> exists P1, {one P A P1} /\ bisim Q1 P1) /\ (forall X N, {oneb Q (dn X) N} -> exists M, {oneb P (dn X) M} /\ forall W, bisim (N W) (M W)) /\ (forall X N, {oneb Q (up X) N} -> exists M, {oneb P (up X) M} /\ nabla w, bisim (N w) (M w)). % Bisimulation is an equivalence Theorem bisim_refl : forall P, bisim P P. coinduction. intros. unfold. intros. apply CH with P = P1. search. intros. exists M. split. search. intros. apply CH with P = M W. search. intros. exists M. split. search. intros. apply CH with P = M n1. search. intros. apply CH with P = Q1. search. intros. exists N. split. search. intros. apply CH with P = N W. search. intros. exists N. split. search. intros. apply CH with P = N n1. search. Theorem bisim_sym : forall P Q, bisim P Q -> bisim Q P. intros. case H1. unfold. intros. apply H5 to H8. search. intros. apply H6 to H8. search. intros. apply H7 to H8. search. intros. apply H2 to H8. search. intros. apply H3 to H8. search. intros. apply H4 to H8. search. Theorem bisim_trans : forall P Q R, bisim P Q -> bisim Q R -> bisim P R. coinduction. intros. case H1. case H2. unfold. intros. apply H3 to H15. apply H9 to H16. apply CH to H17 H19. search. intros. apply H4 to H15. apply H10 to H16. exists N1. split. search. intros. apply H17 with W = W. apply H19 with W = W. apply CH to H20 H21. search. intros. apply H5 to H15. apply H11 to H16. apply CH to H17 H19. search. intros. apply H12 to H15. apply H6 to H16. apply CH to H17 H19. search. intros. apply H13 to H15. apply H7 to H16. exists M1. split. search. intros. apply H17 with W = W. apply H19 with W = W. apply CH to H20 H21. search. intros. apply H14 to H15. apply H8 to H16. apply CH to H17 H19. search.