Abella logo (small)

finite-pic.thm

%% Simulation and bisimulation for the pi-calculus %% %% Given that the meta-logic of Abella is intuitionistic, the %% specification of bisimulation here corresponds to open bisimulation. %% %% Here we prove here that simulation is preorder and bisimulation is an %% equivalence relation.
Specification "finite-pic".
% Simulation defined
CoDefine sim : proc -> proc -> prop by sim P Q := (forall A P1, {one P A P1} -> exists Q1, {one Q A Q1} /\ sim P1 Q1) /\ (forall X M, {oneb P (dn X) M} -> exists N, {oneb Q (dn X) N} /\ forall W, sim (M W) (N W)) /\ (forall X M, {oneb P (up X) M} -> exists N, {oneb Q (up X) N} /\ nabla w, sim (M w) (N w)).
% Simulation is a preorder
Theorem sim_refl : forall P, sim P P.

Theorem sim_trans : forall P Q R, sim P Q -> sim Q R -> sim P R.

% Bisimulation defined
CoDefine bisim : proc -> proc -> prop by bisim P Q := (forall A P1, {one P A P1} -> exists Q1, {one Q A Q1} /\ bisim P1 Q1) /\ (forall X M, {oneb P (dn X) M} -> exists N, {oneb Q (dn X) N} /\ forall W, bisim (M W) (N W)) /\ (forall X M, {oneb P (up X) M} -> exists N, {oneb Q (up X) N} /\ nabla w, bisim (M w) (N w)) /\ (forall A Q1, {one Q A Q1} -> exists P1, {one P A P1} /\ bisim Q1 P1) /\ (forall X N, {oneb Q (dn X) N} -> exists M, {oneb P (dn X) M} /\ forall W, bisim (N W) (M W)) /\ (forall X N, {oneb Q (up X) N} -> exists M, {oneb P (up X) M} /\ nabla w, bisim (N w) (M w)).
% Bisimulation is an equivalence
Theorem bisim_refl : forall P, bisim P P.

Theorem bisim_sym : forall P Q, bisim P Q -> bisim Q P.

Theorem bisim_trans : forall P Q R, bisim P Q -> bisim Q R -> bisim P R.