# ees.thm

%%%%%%%%%%%%%%%% Evaluation by explicit substitution % % We formulate an environment semantics for L_{+,->} where the % environment is a top-level explicit substitution, and where the % evaluation relation is between such substituted expressions. We % prove its equivalence with the substitution-based (or big-step) % evaluation semantics. % % Author: J. Todd Wilson Specification "ees". Close natural, typ, exp. % Nominals Theorem member_prune : forall (G:olist) E, nabla (x:exp), member (E x) G -> exists E', E = y\E'. induction on 1. intros. case H1. search. apply IH to H2. search. % List operations Define insert : o -> olist -> olist -> prop by insert E L (E :: L) ; insert E (F :: L) (F :: L') := insert E L L'. Theorem member_insert : forall E1 E2 L L', insert E1 L L' -> member E2 L' -> E1 = E2 \/ member E2 L. induction on 1. intros. case H1. case H2. search. search. case H2. search. apply IH to H3 H4. case H5. search. search. Theorem insert_prune : forall E L1 L2, nabla (x:exp), insert (E x) (L1 x) L2 -> exists E' L1', E = x\E' /\ L1 = x\L1'. induction on 1. intros. case H1. search. apply IH to H2. search. % Basic lemmas for L_{+,->} Theorem sum_type : forall N1 N2 N, {sum N1 N2 N} -> {natural N1} /\ {natural N2} /\ {natural N}. induction on 1. intros. case H1. search. apply IH to H2. search. % The definitions of sexp and force below are given wrt an unordered % list of distinct free value variables (hence, insert instead of ::) Define vals : olist -> prop by vals nil ; nabla x, vals (val x :: H) := vals H. Theorem insert_vals : forall E H H', insert E H H' -> vals H' -> vals H. induction on 1. intros. case H1. case H2. search. case H2. apply insert_prune to H3. apply IH to H3 H4. search. % Substituted expressions (sexp), substitutions (sub), and extended % values (xval) are defined by mutual induction. Essentially, an sexp % is a pair (S,E), where S is a sub and E is an exp; a sub is a list % of pairs (x,V), where x is a nominal and V is an xval; and an xval % is a substituted expression (s,V) where V is a val. An sexp (S,E) % is defined wrt a list of value variables H; we require all the free % variables of E to appear in either S or H and all type annotations % on lambda terms to be closed. Kind sexp type. Type rep exp -> sexp -> o. % rep x V ("replace") is the substitution [V/x] Type sb olist -> exp -> sexp. % sb S E is the sexp (S,E) Define sexp : olist -> sexp -> prop, sub : olist -> prop, xval : sexp -> prop by nabla x, sexp (H x) (sb (S x) x) := nabla x, vals (H x) /\ sub (S x) /\ member (val x) (H x) ; nabla x, sexp (H x) (sb (S x) x) := nabla x, vals (H x) /\ sub (S x) /\ exists V, member (rep x V) (S x) ; sexp H (sb S (num N)) := vals H /\ sub S /\ {natural N} ; sexp H (sb S (plus E1 E2)) := sexp H (sb S E1) /\ sexp H (sb S E2) ; sexp H (sb S (lam T1 E2)) := {typ T1} /\ nabla x, sexp (val x :: H) (sb S (E2 x)) ; sexp H (sb S (app E1 E2)) := sexp H (sb S E1) /\ sexp H (sb S E2) ; sub nil ; nabla x, sub (rep x V :: S) := xval V /\ sub S ; xval (sb nil (num N)) := {natural N} ; xval (sb S (lam T1 E2)) := sexp nil (sb S (lam T1 E2)). % Invariants of the above definition Theorem sexp_type : forall H E', sexp H E' -> exists S E, E' = sb S E /\ vals H /\ sub S. induction on 1. intros. case H1. search. search. search. apply IH to H2. search. apply IH to H3. case H4. search. apply IH to H2. search. Theorem sexp_abs : forall H H' S E V, nabla x, insert (val x) H' (H x) -> sexp (H x) (sb S (E x)) -> xval V -> sexp H' (sb (rep x V :: S) (E x)). induction on 2. intros. case H2. apply member_insert to H1 H6. case H7. apply insert_vals to H1 H4. search. apply insert_vals to H1 H4. search. apply insert_vals to H1 H4. search. apply member_prune to H6. apply insert_vals to H1 H4. search. apply IH to H1 H4 H3. apply IH to H1 H5 H3. search. apply IH to _ H5 H3. search. apply IH to H1 H4 H3. apply IH to H1 H5 H3. search. Theorem sub_xval : forall S X V, sub S -> member (rep X V) S -> xval V. induction on 1. intros. case H1. case H2. case H2. search. apply IH to H4 H5. search. Theorem sub_uniq : forall S V1 V2, nabla x, sub (S x) -> member (rep x V1) (S x) -> member (rep x V2) (S x) -> V1 = V2. induction on 1. intros. case H1. case H2. case H2. case H3. apply IH to H5 H6 H7. search. case H2. case H3. search. apply member_prune to H6. case H3. apply member_prune to H6. apply member_prune to H6. % Evaluation by explicit subsitution (environment semantics). Note % that, in the app case, the "output" argument of ees contains an % arbitrary new nominal, needed because the substitution is extended. % This means, in particular, that ees is not deterministic. Define ees : sexp -> sexp -> prop by nabla x, ees (sb (S x) x) V := nabla x, member (rep x V) (S x) ; ees (sb S (num N)) (sb nil (num N)) := {natural N} ; ees (sb S (plus E1 E2)) (sb nil (num N)) := exists N1 N2, ees (sb S E1) (sb nil (num N1)) /\ ees (sb S E2) (sb nil (num N2)) /\ {sum N1 N2 N} ; ees (sb S (lam T1 E2)) (sb S (lam T1 E2)) ; nabla x, ees (sb S (app E1 E2)) (V x) := exists S' T E V2, ees (sb S E1) (sb S' (lam T E)) /\ ees (sb S E2) V2 /\ nabla x, ees (sb (rep x V2 :: S') (E x)) (V x). Theorem ees_type : forall E V, sexp nil E -> ees E V -> xval V. induction on 2. intros. case H2. apply sexp_type to H1. apply sub_xval to H5 H3. search. search. apply sum_type to H5. search. search. case H1. apply IH to H6 H3. case H8. apply IH to H7 H4. case H9. %\ apply sexp_abs to _ H12 H10. apply IH to H13 H5. search. % Forcing of an explicit/delayed substitution, defined structurally Define force : olist -> sexp -> exp -> prop by nabla x, force (H x) (sb (S x) x) x := nabla x, member (val x) (H x) ; nabla x, force (H x) (sb (S x) x) V' := exists V, nabla x, member (rep x V) (S x) /\ force nil V V' ; force H (sb S (num N)) (num N) ; force H (sb S (plus E1 E2)) (plus E1' E2') := force H (sb S E1) E1' /\ force H (sb S E2) E2' ; force H (sb S (lam T1 E2)) (lam T1 E2') := nabla x, force (val x :: H) (sb S (E2 x)) (E2' x) ; force H (sb S (app E1 E2)) (app E1' E2') := force H (sb S E1) E1' /\ force H (sb S E2) E2'. Theorem force_prune : forall H E E', nabla (x:exp), force (H x) E (E' x) -> exists E'', E' = x\E''. induction on 1. intros. case H1. search. apply member_prune to H2. apply IH to H3. search. search. apply IH to H2. apply IH to H3. search. apply IH to H2. search. apply IH to H2. apply IH to H3. search. Theorem force_abs : forall H H' S E E' V V', nabla x, insert (val x) H' (H x) -> sexp (H x) (sb S (E x)) -> force (H x) (sb S (E x)) (E' x) -> xval V -> force nil V V' -> force H' (sb (rep x V :: S) (E x)) (E' V'). induction on 3. intros. case H3. apply member_insert to H1 H6. case H7. search. search. apply member_prune to H6. apply force_prune to H7. search. search. case H2. search. case H2. apply IH to H1 H8 H6 H4 H5. apply IH to H1 H9 H7 H4 H5. search. case H2. apply IH to _ H8 H6 H4 H5. search. case H2. apply IH to H1 H8 H6 H4 H5. apply IH to H1 H9 H7 H4 H5. search. Theorem force_inv : forall V V', force nil V V' -> xval V -> (exists N, V = sb nil (num N) /\ V' = num N /\ {natural N}) \/ (exists S T E E', V = sb S (lam T E) /\ V' = lam T E'). intros. case H2. case H1. search. case H1. search. %%%%%%%%%%%%%%%% Main Theorem % % We have defined two (big-step) evaluation systems: L_{+,->} under % eval, and sexps under ees. The main theorem is that force is a % strong bisimulation between these two systems. % Only-if direction Theorem ees_eval : forall E V E', sexp nil E -> force nil E E' -> ees E V -> exists V', force nil V V' /\ {eval E' V'}. induction on 3. intros. case H3. case H2. case H5. apply sexp_type to H1. apply sub_uniq to H8 H4 H5. %\ apply sub_xval to H8 H4. apply force_inv to H6 H9. case H10. search. search. case H2. search. case H2. case H1. apply IH to H9 H7 H4. case H11. apply IH to H10 H8 H5. %\ case H13. search. case H2. search. case H2. case H1. apply force_prune to H7. apply force_prune to H8. apply IH to H9 H7 H4. case H11. apply IH to H10 H8 H5. %\ apply ees_type to H9 H4. case H16. case H17. apply ees_type to H10 H5. %\ apply sexp_abs to _ H19 H20. apply force_abs to _ H19 H13 H20 H14. apply IH to H21 H22 H6. search. % If direction Theorem eval_ees : forall E E' V', sexp nil E -> force nil E E' -> {eval E' V'} -> exists V, force nil V V' /\ ees E V. induction on 3. intros. apply sexp_type to H1. case H3. case H2. search. search. case H2. apply sub_xval to H5 H9. apply force_inv to H10 H11. case H12. case H1. apply IH to H11 H9 H6. apply ees_type to H11 H14. %\ apply force_inv to H13 H15. case H16. apply IH to H12 H10 H7. %\ apply ees_type to H12 H19. apply force_inv to H18 H20. case H21. search. case H2. search. search. case H2. apply sub_xval to H5 H9. apply force_inv to H10 H11. case H12. case H1. apply IH to H11 H9 H6. apply ees_type to H11 H14. %\ apply force_inv to H13 H15. case H16. case H13. case H15. case H18. %\ apply IH to H12 H10 H7. apply ees_type to H12 H22. %\ apply sexp_abs to _ H20 H23. apply force_abs to _ H20 H17 H23 H21. %\ apply IH to H24 H25 H8. search. % Consider the subsets X(H) of sexp and E(H) of exp defined by % X(H) = { E | sexp H E /\ exists E', E = sb nil E'}, % E(H) = { E' | sexp H (sb nil E') }. % We show that, for any H, (force H - -) is a bijection (and thus, by % strong bisimulation, an isomorphism when H = nil) between X(H) and % E(H). Theorem force_bij_exst : forall H E, sexp H (sb nil E) -> force H (sb nil E) E. induction on 1. intros. case H1. search. case H4. search. apply IH to H2. apply IH to H3. search. apply IH to H3. search. apply IH to H2. apply IH to H3. search. Theorem force_bij_uniq : forall H E E1 E2, sexp H (sb nil E) -> force H (sb nil E) E1 -> force H (sb nil E) E2 -> E1 = E2. induction on 2. intros. case H2. case H3. search. case H5. case H4. case H3. search. case H3. case H1. apply IH to H8 H4 H6. apply IH to H9 H5 H7. search. case H3. case H1. apply IH to H7 H4 H5. search. case H3. case H1. apply IH to H8 H4 H6. apply IH to H9 H5 H7. search. Theorem force_bij_uniq' : forall H E E1 E2, sexp H (sb nil E) -> force H (sb nil E1) E -> force H (sb nil E2) E -> E1 = E2. induction on 2. intros. case H2. case H3. search. case H5. case H4. case H3. case H4. search. case H3. case H6. case H1. apply IH to H8 H4 H6. apply IH to H9 H5 H7. search. case H3. case H5. case H1. apply IH to H7 H4 H5. search. case H3. case H6. case H1. apply IH to H8 H4 H6. apply IH to H9 H5 H7. search.