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Abstract. We develop a proof-theoretic framework for treating forward
chaining and the associated notions of saturation within a multisorted,
first-order intuitionistic logic with equality. The notions of polarity and fo-
cused proofs are central to our approach since they provide a generalization
of geometric implications as bipolar formulas, a natural proof-theoretic
interpretation of forward chaining, and the concept of productive proofs.
We identify conditions under which forward chaining with a given set
of formulas is guaranteed to terminate in a finite number of steps. The
motivation for this research stems, in part, from exploring avenues to
automate the Abella theorem prover, which relies on relational specifica-
tions, and where theorems in typical proof developments are essentially
bipolar formulas. We illustrate the potential benefits of automating for-
ward chaining and saturation for Abella by presenting examples that
compute congruence closure and assist in other equational and relational
reasoning tasks.

1 Introduction

When attempting to prove a theorem in an interactive theorem prover, the user
is typically presented with a collection of proof states or subgoals where each
such state consists of two key elements:

1. A context that consists of a collection Σ of (eigen-)variables, the collection
L of previously loaded axioms and verified theorems, and a set Γ of local
assumptions relevant to the position of the subgoal in the entire proof.1

2. A goal (which we write E) that needs to be established within the combined
context of L, Σ, and Γ .

We can write this proof state as the sequent Σ ::L, Γ ⊢ E. To reduce notational
clutter, we will usually omit L as it is static and ambiently present in every
sequent; we will also often omit the Σ :: if those variables are not relevant.

In interactive provers, there are broadly two kinds of logical actions that can
be performed on any proof state that correspond to the two sides of the sequent.
The first kind analyzes the goal formula E and decomposes the proof state

1 In formalisms based on dependent type theory, the two categories of variables and
assumptions are merged; however, in logic and in proof theory they correspond to
two separate and distinct connectives – universal quantification ∀ and implication ⊃.
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into possibly several proof states with simpler goals. The other kind of action
looks at one or more facts in Γ (or L) and then uses rules such as case-analysis,
destruction, inversion, etc. to decompose the facts into simpler facts, without
modifying the goal formula. In both kinds of actions, the lemmas in L (and
possibly also in Γ ) can also participate, and the user generally intends such
lemmas to serve as recipes for the creation of high level inference steps. For
example, suppose the user defines the binary relation ≤ (on natural numbers,
say) and establishes the following transitivity lemma:

∀x∀y∀z.(x ≤ y ∧ y ≤ z ⊃ x ≤ z).

The user expects that this lemma will yield the following two derived inference
rules corresponding to the two sides of the sequent:
– Backward chaining : In order to prove t ≤ s, prove instead t ≤ u and u ≤ s

for some interpolant term u, using the inference rule2

Γ ⊢ t ≤ u Γ ⊢ u ≤ s

Γ ⊢ t ≤ s
.

This rule is an action of the first kind as it modifies the goal but not the proof
context. Organizing proof search using backward chaining is well understood
and has been used to justify the design of logic programming languages [21].

– Forward chaining : If the proof context contains t ≤ u and u ≤ s then produce
the additional assumption t ≤ s, which corresponds to the following rule,
which only modifies the proof context but not the goal:

Γ, t ≤ u, u ≤ s, t ≤ s ⊢ E

Γ, t ≤ u, u ≤ s ⊢ E
.

Observe that in either formulation of these derived inference rules, only the
relational atoms are present; indeed, none of the compound subformulas of the
transitivity lemma are present.

In this paper we will use Gentzen’s sequent calculus to analyze and transform
proof states, i.e., sequents. The ordinary sequent calculus provides a foundational
framework that is able to represent actions on both the proof context and the
goal formula as left and right introduction rules, respectively; moreover, both of
the above kinds of chaining correspond to applications of ∀-left, ⊃-left, and initial
rules. However, the rules of the sequent calculus operate on individual connectives
at a time, so the space of sequent proofs also contains many other unprincipled
proofs that do not follow the forward or backward chaining protocol, and leave
partially instantiated and applied versions of lemmas in the proof contexts. The
general topic of converting lemmas into more synthetic inference rules has been
explored since at least the work of Negri [25, 26], and appears more recently in
a more systematic fashion in the work on focused proof systems, which is the
setting we will use in this paper. Focused proof systems were initially designed

2 Like all inference rules in this paper, the reading direction should be from the
conclusion to the premises.
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as a particular kind of protocol for (linear) logic programming by Andreoli [3],
but in a more modern presentation they define a normal form for sequent proofs
that respects a polarity distinction. This perspective allows focused proofs to
be defined for classical and intuitionistic logics as well where the polarities of
connectives are not predetermined but assignable [16]. Both the forward chaining
and the backward chaining interpretations of lemmas described above arise in
focused proofs simply as a consequence of assigning the right polarities to the
logical connectives and atomic formulas [8, 18].

In this paper we are principally concerned with the forward chaining in-
terpretation of lemmas, which arises out of assigning a positive polarity to
the conjunction and all atomic formulas. This interpretation has the obvious
problem that the premise sequents can be more complex than the conclusions,
since they may contain additional assumptions that were generated from the
existing assumptions. Thus, automated proof search using this interpretation
will be immediately non-terminating without further controls. Similar issues of
non-termination with forward chaining have been considered in the context of
bottom-up logic programming (see e.g. [24]), and termination sometimes needs
to be explicitly engineered in such approaches with the use of global program
transformations [5].

In this paper we will identify a class of lemmas for which termination can be
achieved by direct analysis of focused proofs. In particular, we identify a notion
of productive proof rule as a synthetic inference rule that tries to create a fact
that was not already provable in a single focused phase. We can then run the
forward chaining interpretation as long as the inferences stay productive. We
show that this search strategy terminates on a fairly natural class of lemmas that
consist of bipolar formulas that have an additional safety condition.

We also implement this strategy as a new forward chaining tactic in the Abella
theorem prover, and show experimentally that it reduces much of the tedium of
lemma applications. In fact, we show how to implement certain other well known
operations such as transitive closure (on finite graphs) and congruence closure.
We use Abella because of its proof-theoretic basis and its use of (an extension)
of intuitionistic first-order logic; however, the approach of this paper can be used
to define similar tactics using forward chaining in other proof assistants.

2 Focused proofs for intuitionistic logic with equality

2.1 Polarities and formulas

In a two-sided sequent presentation of linear logic, every logical connective has
the property that either its right-introduction rules are invertible or its left-
introduction rules are invertible (never both). This allows us to classify every
connective into two polarities, with those with right-introduction rules being
invertible called negative and those with left-introduction rules being invertible
called positive. For intuitionistic and classical (non-linear) logics, this definition of
polarity is not directly applicable, since there are connectives such as conjunction
∧ that can be given invertible rules on both sides of the sequent arrow, as is the
case with the popular G3 and G3i proof systems [27]. Particular choices of rules
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may give particular polarizations of these connectives with ambiguous polarities;
for example, Gentzen’s LJ and LK calculi [14] treats conjunction as uniquely
negative. (Atomic formulas in every one of these logics also have ambiguous
polarities, but this is only relevant in the presence of the focusing restriction
described in the next subsection.)

One common technique in logics such as intuitionistic logic is to include both
polarizations of connectives that can have ambiguous polarities. In our setting,
the conjunction ∧ and its unit t will both have two polarized forms, namely,
∧−, ∧+, and t−, t+. To be precise, we should maintain a distinction between
formulas and polarized formulas. The latter class of formulas will not contain t or
∧, but may include t−, t+, ∧−, and ∧+. Given a polarized formula B, we define
its unpolarized form B̃ as that formula obtained by replacing every occurrence
of ∧− and ∧+ in B with ∧, and every instance of t− and t+ in B with t. When
this distinction is clear from the context, we may sometimes refer to polarized
formulas simply as formulas.

The multisorted first-order intuitionistic logic we consider in this paper
contains the following connectives.
– Equality = is treated as a logical connective, and equality and all other

atomic formulas are treated as positively polarized.
– The quantifiers ∀τ and ∃τ are first-order: i.e., the types τ range over primitive

types. Of these, ∀τ has negative polarity and ∃τ has positive polarity.
– The propositional connectives are divided into positive connectives (∧+, t+,

∨, f) and the negative connectives (∧−, t−, ⊃).
We say that a formula is negative if its top-level connective is negative, and is
positive if its top-level connective is positive.

2.2 The multifocused proof system LJF=

Figure 1 contains the LJF = proof system in which all formulas in all sequents
are polarized. There are three kinds of sequents in this proof system:

Γ ⇑Θ ⊢ ∆⇑ Ξ (unfocused sequent)
Γ ⊢ P ⇓ (right-focused sequent)
Γ ⇓ Θ ⊢ P (left-focused sequent)

Here, Γ is a set of negatively polarized formulas or atoms, and Θ, ∆, and Ξ
are multisets of polarized formulas with Ξ restricted to positive formulas. Given
that we are working with intuitionistic logic, we insist that the multiset union of
∆ and Ξ is a singleton multiset in unfocused sequents, i.e., one of ∆ or Ξ is a
singleton and the other is empty. The introduction rules introduce connectives
only within the Θ and ∆ zones. Whenever Θ or ∆ is empty, we indicate it with
an empty space; furthermore, in the case of unfocused sequents, we also elide the
corresponding ⇑. Sequents of the form Γ ⊢ P (i.e., Γ ⇑ ⊢ ⇑ P ) will be called
border sequents.

The LJF = proof system is multifocused in the sense that in the left-focused
sequent Γ ⇓ Θ ⊢ C the zone of foci Θ can have multiple formulas. Multifocusing
is a generalization of ordinary focusing that permits the parallel application of
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Structural rules

Σ ::Γ ⊢ P ⇓
Σ ::Γ ⊢ P

Dr

Σ ::Γ ⇑Θ ⊢ ⇑ P

Σ ::Γ ⇑Θ ⊢ P ⇑ Sr

Σ ::Γ ⊢ N ⇑
Σ ::Γ ⊢ N ⇓ Rr

Σ ::Γ ⇓ N ⊢ P

Σ ::Γ ⊢ P
Dl

Σ ::C, Γ ⇑Θ ⊢ ∆⇑ Ξ

Σ ::Γ ⇑C,Θ ⊢ ∆⇑ Ξ
Sl

Σ ::Γ ⇑P ⊢ P

Σ ::Γ ⇓ P ⊢ P
Rl

Here, P is a multiset of positive formulas and N is a non-empty multiset of negative
formulas such that every formula in N is in the set Γ .

Initial rule Σ ::Γ, P ⊢ P ⇓ Ir, P atomic

Invertible introduction rules

Σ ::Γ ⇑Θ ⊢ B1 ⇑ Σ ::Γ ⇑Θ ⊢ B2 ⇑
Σ ::Γ ⇑Θ ⊢ B1 ∧− B2 ⇑ Σ ::Γ ⇑Θ ⊢ t− ⇑

x:τ,Σ ::Γ ⇑Θ ⊢ B ⇑
Σ ::Γ ⇑Θ ⊢ ∀xτ .B ⇑

Σ ::Γ ⇑B1 ⊢ B2 ⇑
Σ ::Γ ⇑Θ ⊢ B1 ⊃ B2 ⇑

Σ ::Γ ⇑Θ ⊢ ∆⇑ Ξ

Σ ::Γ ⇑ t+, Θ ⊢ ∆⇑ Ξ

Σ ::Γ ⇑B1, B2, Θ ⊢ ∆⇑ Ξ

Σ ::Γ ⇑B1 ∧+ B2, Θ ⊢ ∆⇑ Ξ

Σ ::Γ ⇑ f, Θ ⊢ ∆⇑ Ξ

Σ ::Γ ⇑B1, Θ ⊢ ∆⇑ Ξ Σ ::Γ ⇑B2, Θ ⊢ ∆⇑ Ξ

Σ ::Γ ⇑B1 ∨B2, Θ ⊢ ∆⇑ Ξ

x:τ,Σ ::Γ ⇑B,Θ ⊢ ∆⇑ Ξ

Σ ::Γ ⇑∃xτ .B,Θ ⊢ ∆⇑ Ξ

(θ = mgu(t, s)) Σθ ::Γθ ⇑Θθ ⊢ ∆θ ⇑ Ξθ

Σ ::Γ ⇑ s = t, Θ ⊢ ∆⇑ Ξ

(t and s not unifiable)

Σ ::Γ ⇑ s = t, Θ ⊢ ∆⇑ Ξ

Non-invertible introduction rules

Σ ::Γ ⊢ t = t ⇓ Σ ::Γ ⊢ t+ ⇓
Σ ::Γ ⊢ Bi ⇓

Σ ::Γ ⊢ B1 ∨B2 ⇓ i ∈ {1, 2}

Σ ::Γ ⊢ B1 ⇓ Σ ::Γ ⊢ B2 ⇓
Σ ::Γ ⊢ B1 ∧+ B2 ⇓

(Σ ⊢ t : τ) Σ ::Γ ⊢ [t/x]B ⇓
Σ ::Γ ⊢ ∃xτ .B ⇓

Σ ::Γ ⊢ B1 ⇓ Σ ::Γ ⇓ B2, Θ ⊢ P

Σ ::Γ ⇓ B1 ⊃ B2, Θ ⊢ P

Σ ::Γ ⇓ Bi, Θ ⊢ P

Σ ::Γ ⇓ B1 ∧− B2, Θ ⊢ P

(Σ ⊢ t : τ) Σ ::Γ ⇓ [t/x]B,Θ ⊢ P

Σ ::Γ ⇓ ∀xτ .B,Θ ⊢ P

Γ ranges over a set of negatively polarized formulas or atoms; ∆, Θ range over multisets
of polarized formulas; Ξ ranges over multisets of positive formulas; P denotes a positive
formula; N denotes a negative formula; C denotes either a negative formula or a
(positive) atom; and B denotes any polarized formula. The multiset union of ∆ and Ξ
must be a singleton. Parenthesized premises are to be interpreted as side conditions.

Fig. 1. The LJF = proof system: multifocused version
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synthetic inference rules [6, 7]. We will exploit multifocusing in Section 4.1 when
we deal with forward chaining and saturation.

Focused proofs are constructed in two phases. The invertible phase (a.k.a.
negative or asynchronous phase) involves unfocused sequents and uses invertible
rules on principal formulas drawn from Θ or ∆. The non-invertible phase (a.k.a.
positive and synchronous phase) involves focused sequents. Transitions between
these two phases happen with a collection of structural rules, where the release
rules (Rl and Rr) transition from a focused conclusion to an unfocused premise,
while the decide rules (Dl and Dr) transition from an unfocused conclusion to
a focused premise. Note that the conclusions of both decide rules are border
sequents. In the invertible phase, the two store rules (Sl and Sr) are used to
transfer a formula from Θ and ∆ to Γ and Ξ, respectively, when no further
invertible rules can be applied to that formula; these store rules are internal to
the invertible phase. The initial rule Ir is part of the non-invertible phase and
requires a right focus on a (positive) atom.

The LJ = proof system is defined as the unfocused version of LJF =; that is,
LJ = results from taking all the inference rules of LJF = and replacing ⇑ and ⇓
with commas and replacing all polarized formulas with their unpolarized forms.
The result of doing this replacement on the store rules (Sl and Sr) and the release
rules (Rl and Rr) would equate their conclusions and premises, so we drop these
rules from LJ =. Wherever an LJF = rule is restricted to formulas of a certain
polarity, the corresponding LJ = rule drops the restriction. Thus, the Dl rule
becomes the contraction rule in LJ =.

Theorem 1 (Soundness and Completeness of LJF = wrt LJ =). Let B be a
polarized formula defined over the variables in Σ. Then the sequent Σ :: · ⇑ ⊢ B ⇑
is provable in LJF = if and only if the sequent Σ :: · ⊢ B̃ is provable in LJ =.

Proof (Sketch). The forward direction (soundness) is immediate. The converse
(completeness) is more involved but follows by modifying the proof for the
completeness of the singly focused version of LJF in [16] to also account for
equality (following the treatment of equality in, say, [19]). This use of LJF assumes
that all atomic formulas are polarized positively. When completeness holds for the
singly focused proof system, it immediately holds for the multi-focused system
which includes the singly focused system. ⊓⊔

3 Bipolar formulas and productive proofs

3.1 Purely positive and bipolar formulas

A polarized formula is purely positive if the only logical connectives in it are
positive. Let P be the set of all purely positive formulas. The following theorem
shows that LJF = proofs of purely positive formulas are particularly simple.

Theorem 2. For any P ∈ P:
1. If the sequent Σ ::Γ ⊢ P ⇓ has an LJF = proof, it has a proof that is exactly

one non-invertible phase composed only of right-introduction rules.
2. It is decidable whether or not Σ ::Γ ⊢ P ⇓ is provable.
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Proof. By immediate inspection of the inference rules in Figure 1. ⊓⊔
The dual set N of purely negative formulas consists of formulas N with the

grammar N ::= t− | N1 ∧− N2 | P ⊃ N | ∀τx.N (where P ∈ P). It is easy to
show that a formula in N is provably equivalent in LJF = to t−. As a result,
we shall generally be able to ignore these formulas. Note that purely negative
formulas can have positive subformulas, but only as antecedents of implications.

A more interesting class of formulas are the bipolar formulas which are
negative formulas with the grammar B ::= t− | B1 ∧− B2 | P1 ⊃ P2 | ∀τx.B
(where P1 and P2 are in P). It is not difficult to show that every bipolar formula
is logically equivalent to the conjunction (∧−) of formulas of the form

∀x̄.(A1 ∧+ · · · ∧+ An ⊃ P ), (n ≥ 0)

where P ∈ P, the Ais are atoms, and the empty ∧+ is written as t+. Following [25],
we shall call formulas of this shape geometric implications, and we say that the
head of this implication is P . If B is a bipolar formula, we write JBK to denote
the multiset of all such geometric implications in this conjunction. We extend
this function to sets of bipolar formulas, i.e., JB1, . . . , BmK = JB1K ∪ · · · ∪ JBmK.
A derivation that starts (reading conclusion-upwards) with Dl on such a formula
would have the following non-invertible phase in LJF =:

Γ,A1θ, . . . , Anθ ⊢ A1θ ∧+ · · · ∧+ Anθ ⇓
† Γ,A1θ, . . . , Anθ ⇑Pθ ⊢ C

Γ,A1θ, . . . , Anθ ⇓ Pθ ⊢ C

Γ,A1θ, . . . , Anθ ⇓ A1θ ∧+ · · · ∧+ Anθ ⊃ Pθ ⊢ C

Γ,A1θ, . . . , Anθ ⇓ ∀x̄.(A1 ∧+ · · · ∧+ An ⊃ P ) ⊢ C
‡

Γ,A1θ, . . . , Anθ ⊢ C
Dl

where the derivation marked † consists of n− 1 applications of ∧+-right and Ir,
and that marked ‡ consists of repeated applications of ∀-left. We say that forward
chaining on ∀x̄.(A1 ∧+ · · · ∧+ An ⊃ P ) succeeds if some instance of A1, . . . , An

are present in the proof context of the root sequent and the information present
in the same instance of the head P is added to the proof context.

In the rest of this paper we will present a complete proof search strategy for
formulas of the form (B1∧+ · · ·∧+Bn) ⊃ B0 where B0, . . . , Bn (n ≥ 0) are bipolar
formulas. The border sequents within an LJF = proof of such a formula are of the
form B1, . . . , Bn,A ⊢ P , where P is in P and A is a set of atomic formulas: we
shall call such sequents reduced sequents. The LJF = system restricted to these
border sequents can be simplified by requiring the goal formulas to be purely
positive, and removing the now redundant Rr and Sr rules.

If we abstract the structure of LJF = proofs of reduced sequents as a tree
of occurrences of decide rules, then every occurrence of a Dr rule is a terminal
node and every occurrence of a Dl rule is an internal node. Additionally, a
formula occurrence under left focus in the conclusion of a left-introduction rule
corresponds uniquely to a formula occurrence under left focus in exactly one of
the premises of that rule. As a consequence, if an instance of Dl selects m ≥ 1
formulas for its focus, then the Rl rule at the top of that non-invertible phase
also has m formulas as the left foci.
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3.2 Productive proofs

An application of the Rl rule (where P is a multiset of purely positive formulas)

Σ ::Γ ⇑P ⊢ Q

Σ ::Γ ⇓ P ⊢ Q
Rl

is unproductive if there is a P ∈ P such that Σ ::Γ ⊢ P ⇓ is provable. An
instance of Rl is productive in case it is not unproductive. A proof is productive
if all occurrences of Rl are productive. The intuition here is that if Σ ::Γ ⊢ P ⇓
is provable then the information content of P is already in Γ : using Rl on
Σ ::Γ ⇓ P ⊢ E would then add the content of P to Γ , which is redundant.

In order to prove the completeness of productive proofs, we first consider the
following cut-style rule where P and Q are restricted to be purely positive:

Σ ::Γ ⊢ P ⇓ Σ ::Γ ⇑P,Θ ⊢ Q

Σ ::Γ ⇑Θ ⊢ Q
cut⇕

Theorem 3 (Elimination of cut⇕). If a reduced border sequent has a proof in
LJF = plus cut⇕ then it has a proof in LJF = (without cut⇕).
Proof. Say that an instance of cut⇕ has size n if there are n occurrences of logical
connectives in the cut formula P . The size of a proof with possible occurrences
of cut⇕ is the sum of the size of all occurrences of cut⇕ rules it contains.

If the size of a proof is 0 then any occurrence of cut⇕ in it involves an atomic
cut formula. All such occurrences are of the form

Σ ::Γ ⊢ A ⇓ Ir

π
Σ ::Γ,A ⇑Θ ⊢ Q

Σ ::Γ ⇑A,Θ ⊢ Q
Sl

Σ ::Γ ⇑Θ ⊢ Q
cut⇕.

Since A is a member of Γ (and since multiplicity in the set Γ does not matter),
the endsequent of π is the same as Σ ::Γ ⇑Θ ⊢ E: hence, we can replace this
derivation with π. This reduces the number of atomic instances of cut⇕ by one.

Assume that the size of the proof is n > 0. We can prove by induction on the
structure of cut formulas that we can lower this measure by pushing the cut⇕
upwards in the usual way. ⊓⊔
Theorem 4 (Completeness of productive proofs). If a reduced sequent has
an LJF = proof, it has a productive LJF = proof.

Proof. Every occurrence of an unproductive Rl can be replaced with possibly
several instances of cut⇕. In particular, consider the following unproductive Rl

rule along with the Dl rule that occurs below it in the same phase.

· · ·

π

Σ ::Γ ⇑P1, . . . , Pn,P ⊢ Q

Σ ::Γ ⇓ P1, . . . , Pn,P ⊢ Q
Rl

... · · ·
Σ ::Γ ⇓ N1, . . . , Nn,N ⊢ Q

Σ ::Γ ⊢ Q
Dl
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Also assume that we have for 1 ≤ i ≤ n, πi is a proof of Γ ⊢ Pi ⇓ (n ≥ 1) and
that Ni is the antecedent of Pi. We can now reorganize this proof as follows.

πn

Γ ⊢ Pn ⇓

π1

Γ ⊢ P1 ⇓
π

Γ ⇑P1, . . . , Pn,P ⊢ Q

Γ ⇑P2, . . . , Pn,P ⊢ Q
cut⇕

...
Γ ⇑Pn,P ⊢ Q

Γ ⇑P ⊢ Q
cut⇕

· · ·
... · · ·

Γ ⇓ N ⊢ Q

Γ ⊢ Q
Dl

Using Theorem 3, there is then a cut-free proof of the same end sequent. Since
no new occurrences of Rl rules are introduced in the cut-elimination procedure,
the resulting proof is productive. ⊓⊔

An immediate consequence of this completeness theorem is that we only need
to search for productive proofs when attempting to prove a reduced sequent.

4 Forward chaining and saturation

4.1 Eliminating the non-determinism of Dl

The search for a proof of a reduced sequent in LJF = begins by choosing between
Dl or Dr. If Dr is chosen, then the proof will terminate within the non-invertible
phase above the Dr rule, ending with one of Ir, t

+
r , or =r (see Theorem 2).

Otherwise, when choosing Dl we must also choose a subset of the bipolar formulas
in Γ as well as choose their multiplicity in the multiset that is the left-focus zone.
In this case, the entire non-invertible left-focused phase can fail if any of the
selected foci cannot be used to successfully used in the forward direction (e.g.,
the body of a geometric implication does not hold in the current context). While
there can be clever reasons for selecting certain formulas as foci—say, because
the user indicates them as part of a proof script—the general problem of what
formulas to pick is not simplified by the ability to pick multiple foci. Indeed, from
an implementation standpoint it is better to select the left foci one at a time,
which is a non-deterministic choice with finitely many possibilities, rather than
to backtrack over the infinite possibilities of selecting a multiset from a set.

We now motivate a variant of the Dl rule that becomes deterministic by
having it select all bipolar formulas in Γ with a rule similar to the following:

Σ ::Γ ⇓ N ⊢ P

Σ ::Γ ⊢ P
Dl,

where N is the multiset of the negative formulas in Γ (all given multiplicity 1).
As written, this rule has four significant problems.
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First, the multiple foci in a left-focused sequent are intended to be independent.
If there are rigid dependencies between the foci, then the non-invertible phase
would immediately fail. For example, consider the sequent r, r ⊃ s, s ⊃ q ⇑ ⊢ ⇑ q,
for propositional constants r, s, q. Clearly, the Dl rule should not place both r ⊃ s
and s ⊃ q in the focus that initiates the non-invertible phase since only one of
these has a premise currently holding in the proof context.

Second, if B1 ∧− B2 is among the left foci, then the ∧−l rules would replace
that conjunction with either B1 or B2. However, it may be that both B1 and B2

can be foci simultaneously: in that case, it would be better to initially chose two
copies of B1 ∧− B2 in the original focus so that both conjuncts could be explored.

The third problem, similar to the second problem, concerns geometric formulas.
It might be possible to find multiple instances of the antecedent of such an
implication but only one of these can contribute a successful forward-chaining
step. For example, the sequent p a, p b,∀x.p x ⊃ q x ⇑ ⊢ ⇑ q a ∧+ q b has an
LJF = proof with exactly one left-focused non-invertible phase that starts by
using Dl with two copies of ∀x.p x ⊃ q x in focus. Once again, the benefit of
multi-focusing is lost if we can pick only one copy of each formula in the Dl rule.

Finally, the Dl rule might lead to a non-productive Rl rule (in the sense of
Section 3.2).

4.2 Refined processing of geometric implications

While the problems outlined above cannot be solved for the full logic, they
can be addressed successfully when we restrict our attention to reduced border
sequents. All four of these problems are addressed by changing the interpretation
of left-focused sequents Γ ⇓ Θ ⊢ P . In LJF = the context of left foci Θ is treated
as linear, without allowing for any weakening or contraction. The problems above
seem to indicate that this restriction is too strong, since we may need to back off
from a decision to focus on a formula if we discover it has an antecedent that
is not satisfied by the proof context, or to duplicate a focus if we find multiple
possible uses for it during the non-invertible phase. One way to achieve this
would be to add contraction and weakening to the foci Θ in such sequents:

Σ ::Γ ⇓ Θ ⊢ P

Σ ::Γ ⇓ N,Θ ⊢ P

Σ ::Γ ⇓ N,N,Θ ⊢ P

Σ ::Γ ⇓ N,Θ ⊢ P

Of course, adding these rules introduces non-deterministic choice points in the
proof with contraction, in particular, restoring the infinite choices problem we
were attempting to avoid with our naive Dl rule.

To improve our treatment of the above problems with the naive Dl, we will
eventually build a new proof system called FC that resembles LJF = except that
it is more sophisticated in its manipulations of the left multifocus zone. We justify
the design of this new proof system by addressing the problems listed above in
the order of easiest to hardest.

Handling non-productivity: In Section 3.2 we classified the Rl rule as productive
if and only if the focus being released is on a formula that is not immediately
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provable in a single phase. This can be implemented as part of the Rl rule where
we simply filter out all the provable formulas with the following rule:

Σ ::Γ ⇑Q1, . . . , Qn ⊢ R (Σ ::Γ ⊢ Pi ⇓ )
m
i=1 (Σ ::Γ ⊬ Qj ⇓ )

n
j=1

Σ ::Γ ⇓ P1, . . . , Pm, Q1, . . . , Qn ⊢ R
Rd

l .

Here, the notation ⊬ stands for the corresponding right-focused sequent not being
provable. Note that by Theorem 2, provability of sequents of the form Γ ⊢ P ⇓ is
decidable. The items in parentheses above the horizontal line are side conditions:
in particular, the proof tree that is constructed using the Rd

l rule has only one
premise.

Enabling the restriction to geometric implications: The second problem identified
above is already solved by the restriction of Θ to geometric implication formulas,
which have no occurrences of ∧−. However, this requires a further change to Dl

because the formulas in Γ are bipolar, not necessarily geometric implications.
However, as we have already seen, each bipolar formula B is related to a multiset
of geometric formulas JBK = {N1, . . . , Nn} such that B is logically equivalent to
N1∧− · · · ∧−Nn (or t− if n = 0). Therefore, we can change the Dl rule to the rule

Σ ::Γ ⇓ JN K ⊢ P

Σ ::Γ ⊢ P
JDlK,

where N is the multiset of the negative formulas in Γ (all given multiplicity 1).

Handling multiple proofs of antecedents: The first and third problems both deal
with the logical rules in the non-invertible phase. In our case, since our left-foci
are guaranteed to be geometric implications after a JDlK, we can replace the
three left-introduction rule in the non-invertible phase LJF = (Figure 1) with the
following rule of forward chaining :

Σ ::Γ ⊢ Pθ1 ⇓ · · · Σ ::Γ ⊢ Pθn ⇓ Σ ::Γ ⇓ Qθ1, . . . , Qθn, Θ ⊢ R

Σ ::Γ ⇓ ∀x̄.(P ⊃ Q), Θ ⊢ R
fc

where each of the θi are ground substitutions for the variables x̄. Note that that
if the antecedent P is not provable with any substitution, then n = 0 and the
effect of this rule is a weakening of the geometric implication. Likewise, for each
instance of the antecedent P that is proved, the corresponding instance of the
head Q is added to the foci, which handles the third problem outlined above.

Without any additional restriction, it is not always the case that there is
a finite number of ground substitutions such that Σ ::Γ ⊢ Pθ ⇓ is provable
(which is a necessary requirement for the fc rule). We make one additional
restriction on the structure of bipolar formulas: we require that every geometric
implication ∀x̄.(A1 ∧+ · · · ∧+ An ⊃ P ) in JBK is such that the free variables
of its head P are also free in at least one of A1, . . . , An. This restriction is
commonly used in logic and relational programming: in [17] such formulas are
called allowed clauses. This restriction formally eliminates some bipolar formulas:

11



for example, ∀x.(t+ ⊃ x ≤ x). (Note that the empty ∧+ is t+.) However, the
formula ∀x.(nat x ⊃ x ≤ x) does satisfy this restriction, where nat is an atomic
predicate. Following this example, we can convert every bipolar formula into
one that satisfies the allowed clause restriction by making typed quantification
more explicit as predicates. That is, for every primitive type τ , we allow τ to be
used also as a predicate of one argument and then replace quantifiers as follows:
∀τx.P x with ∀x.(τx ⊃ P x) and ∃τx.P x with ∃x.(τx ∧+ P x).

Let FC be the proof system that results from modifying the proof system
in Figure 1 as follows: replace ∧−l and Dl with JDlK, replace ∀l and ⊃l with fc,
and replace Rl with Rd

l . We also remove all the existing left-introduction rules
for left-focused sequents, which are now redundant given fc. It is easy to show
that if a reduced sequent has an FC proof then it has an LJF = proof. The main
advantage of using the FC proof system is that we need no cleverness in choosing
the formulas to use with the Dl rule: instead we can select all available bipolar
formulas for that rule, and then dynamically adjust the foci when searching for a
productive proof.

A forward-chaining phase is a partial proof that has JDlK as its last rule, has
Rd

l as its uppermost rules, and only fc for its internal rules. A forward chaining
phase is a useless phase if every occurrence of Rd

l hasborder sequents as premises
because the Rd

l rules discards all the foci: for example,

π1

Σ ::Γ ⇑ ⊢ Q

Σ ::Γ ⇓ P1 ⊢ Q
Rd

l · · ·

πn

Σ ::Γ ⇑ ⊢ Q

Σ ::Γ ⇓ Pn ⊢ Q
Rd

l

Σ ::Γ ⇓ JN K ⊢ Q
fc ∗ .

Σ ::Γ ⊢ Q
JDlK

The end sequents of any of the proofs πi matches that of the useless phase itself.
The proof context ⟨Σ,Γ ⟩ of a border sequent Σ ::Γ ⊢ Q is said to be saturated
if the FC proof of this sequent must end in either a useless phase or Dr. Any
attempt to use Dl for this sequent would be unproductive.

Example 1. Assume that i is a primitive type, f is a unary constructor for i, p is
unary predicate for type i, and t is a Σ-term of type i.
– If Γ contains p t and ∀ix.(p x ⊃ p (f x)), then ⟨Σ,Γ ⟩ is not saturated.
– If Γ is the two element set containing p t and ∀ix.(p x ⊃ ∃y.p y), then ⟨Σ,Γ ⟩

is saturated.
– If ≤ is a binary predicate on type i and Γ contains p t and ∀ix.(p x ⊃

∃iy.(p y ∧+ x ≤ y)), then ⟨Σ,Γ ⟩ is not saturated.

4.3 Safe for saturation

One of the reasons to identify saturated sequents is that they provide a simple
decision procedure for proving P formulas. In particular, if ⟨Σ,Γ ⟩ is saturated
then determining if it entails a purely positive formula is immediate in FC (and
hence in LJF =). Every forward chaining phase that concludes with Σ ::Γ ⊢ Q
will be useless by definition, so it will be provable if and only if Σ ::Γ ⊢ Q ⇓ is
provable, which is decidable by Theorem 2.
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We say that a border sequent is safe for saturation in n steps (for a natural
number n) if it has an FC phase that ends with a non-useless forward chaining
phase, and each of the border sequents in the premises of that phase has a
saturated context or is safe for saturation in n− 1 steps. We say that the sequent
is safe for saturation if there is an n such that it is safe for saturation in n
steps. Any border sequent that is safe for saturation has decidable provability
because one can simply compute repeatedly forward-chaining phases (of which
there will be finitely many), and if any border sequent premise is saturated then
its provability is decidable as argued below. Furthermore, there are no infinitely
deep branches for that border sequent along non-useless forward chaining phases
because the length of that branch (counting the instances of Dl) is bounded
above by some finite number n.

The next theorem identifies a natural class of sequents that are safe for
saturation.

Theorem 5. Let ⟨Σ,Γ ⟩ be a proof context and let N be the multiset of bipolar
formulas in Γ . This context is safe for saturation if for every geometric implication
in JN K of the form ∀x̄.(P ⊃ Q) it is the case that Q is composed of only f, ∨, t+,
∧+, equality, and atomic formulas without constructors of non-zero arity.

Proof. Let the proof context ⟨Σ,Γ ⟩ be divided into the negative (bipolar) formu-
las N and the positive (atomic) formulas P . Define the cover of this proof context
⟨Σ,N ,P⟩◦ as the set of atomic formulas of the form p t1 · · · tn where p is any
n-ary predicate occurring in formulas in either N or P and the terms t1, . . . , tn
are either subterms of terms appearing in the atoms of P or constructors of arity
0 (i.e., constants). Note that ⟨Σ,N ,P⟩◦ is a finite set. Now consider the following
productive forward-chaining phase:

. . . Σθ ::N θ,Pθ,P ′ ⊢ Qθ . . .

Σ ::N ,P ⇑P ′′ ⊢ Q
invertible phase

Σ ::N ,P ⇓ JN K ⊢ Q
fc∗, Rd

l

Σ ::N ,P ⊢ Q
JDlK

Here θ is a substitution (possibly the identity) resulting from possible occurrences
of the =l rule in the invertible phase, and P ′ is a multiset of atomic formulas that
are not present in Pθ. Since this is a productive proof, either P ′ is not empty or
the phase is useless (and can be collapsed). We make the following observations
about the forward-chaining phase above.

1. ⟨Σθ,N θ,Pθ ∪ P ′⟩◦ ⊆ ⟨Σ,N ,P⟩◦. This follows simply from the fact that
since (i) there are no existential quantifiers in the head of bipolar formulas,
no new eigenvariables are introduced into the proof context and (ii) since
the head of geometric clauses do not contain constructors of non-zero arity,
any substitution instance of such head will be composed of subterms on the
P component of the context.

2. Both P ⊆ ⟨Σ,N ,P⟩◦ and Pθ ∪ P ′ ⊆ ⟨Σ,N ,P⟩◦.
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3. If the forward chaining phase is not useless, then P ′ is non-empty and the
number of elements in Pθ∪P ′ is strictly greater than the number of elements
in P (ignoring multiplicity).

As a result of these observations, the number of not useless forward-chaining
phases must be limited by the size of the set ⟨Σ,N ,P⟩◦. ⊓⊔

Theorem 5 provides a useful criterion for determining when one can expect
the saturation process to terminate. Undoubtedly, many other criteria can also
be developed.

4.4 Implementing a forward chaining tactic (in Abella)

We have implemented a forward chaining tactic based on FC in the Abella [4]
interactive theorem prover.3 Abella is based on a variant of the G logic [11],
which is an extension of first-order logic with inductive and co-inductive fixed
points, the ∇ quantifier [22] and nominal constants for reasoning about binding
structures in λ-terms, and a generalization of the usual αβη equational theory of
λ-terms to also incorporate equivariance of nominal constants.

The implementation of the JDlK rule of FC has to be adapted for the im-
plementation because Abella is intended as a general purpose system where we
cannot a priori limit the shape of the elements of Γ : users are allowed to write
any theorems they want, even those that are not bipolar formulas. We implement
a variant of the system where the user picks the specific multiset of lemmas to
decide on, and the geometric implication set JBK of every lemma B is computed
on the fly. The implementation also does not currently detect whether the lemmas
the user indicates for saturation are safe for saturation. Instead, the saturation
mechanism is run with an implicit finite phase height bound, which bounds the
number of instances of Dl needed on any branch of the derivation.

Another key difference with FC is that the implementation does not keep the
context Γ as a set. This is mainly for performance reasons, since transforming a
multiset into a set is a worst-case quadratic operation that should therefore not
be done too often.

5 Related work

Marin et al. [18] showed how focused proof systems can be used to account for a
range of synthetic inference rules that appeared in the literature. In particular, the
work of Negri in [25, 26] was accounted for by polarizing atomic formulas positively
(as done in this paper). Synthetic inference rules developed by Viganò [28] are
different and can be accounted for by polarizing atoms negative. Negatively
polarized atomic formulas can also be used to describe the two phases of uniform
proofs (goal-reduction and backchaining) in the setting of logic programming [20].

Although this paper mostly deals with only bipolar formulas and geometric
implications, such formulas appear in many situations. For example, Horn clauses
are clearly bipolar formulas, as are many axioms describing algebraic structures.

3 See https://abella-prover.org/fc for a page dedicated to this implementation,
with installation instruction and browsable examples.
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If one examines published proof developments in, say, Abella one finds that a
large majority of theorems proved in these settings are bipolar. For example, every
theorem in the development of a library for multisets (https://github.com/meta-
logic/abella-reasoning/tree/master/lib) is not only a bipolar formula but also a
geometric implication. Even in more meta-theoretic papers, such as [1, 2], the
collection of theorems is either entirely or almost all bipolar formulas. There are
also results that describe how it is possible to convert non-bipolar formulas into
geometric implications if one is willing to add new predicate constant [9].

Saturation has been used as a computational device not only in the setting of
Datalog [24] but also in the setting of logical algorithms [13, 12].

6 Conclusion

This paper introduces a proof-theoretic framework for defining forward chaining
and saturation within a multisorted, first-order intuitionistic logic with equality.
Key to this framework are the notions of polarity and focused proofs, which
provide a principled interpretation of forward chaining and productive proofs.
We also define the notion of safe for saturation under which forward chaining is
guaranteed to terminate and exhibit a natural class of formulas that are shown
to be safe in this sense. This theoretical analysis motivates and supports the
implementation of a novel forward chaining tactic within the Abella theorem
prover, which has been shown to reduce manual proof effort by automating lemma
applications and facilitating tasks like congruence closure and various equational
and relational reasoning.
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A Examples of forward chaining

A.1 Simple closure properties

Consider a simple finite graph structure ⟨N,E⟩ where N is a set of nodes and
E ⊆ N × N . To encode this, let the primitive type g denote nodes, and let
Σ assign to each member of N the type g. Also, let adj and path be binary
predicates over type g. The set A = {node x | x ∈ N} ∪ {adj x y | ⟨x, y⟩ ∈ E}
encodes the adjacency information of the given graph. Now consider the following
geometric implications.

∀gx.∀gy.(adj x y ⊃ path x y)

∀gx.(node x ⊃ path x x)

∀gx.∀gy.(path x y ⊃ path y x)

∀gx.∀gy.∀gz.((path x y ∧+ path y z) ⊃ path x z)

By Theorem 5, the proof context that contains Σ, A, and any subset of these
four formulas is safe for saturation. Proof search in FC can decide whether two
nodes in N are in the same connected component or not.

In Abella: In Abella the above signature and lemmas can be added to the context
using Kind, Type, and Theorem declarations as follows:

Kind g type.
Type node g -> prop.
Type adj g -> g -> prop.
Type path g -> g -> prop.

Theorem refl : forall n, node n -> path n n.
Theorem trans : forall x y z, adj x y -> path y z -> path x z.

Suppose we want to encode the following graph and determine all the nodes
reachable from a.

a b

c d

e

f

In Abella we would do this by declaring the structure as lemmas.

Type a, b, c, d, e, f g. % declare the nodes as new constants
Theorem nodes : node a /\ node b /\ node c /\ node d /\ node e /\ node f.
Theorem adjs : adj a b /\ adj a c /\ adj b c /\ · · · /\ adj d f.

Say we want to prove that there is a path from, say, a to e, which in ordinary
Abella looks like the following script:

Theorem example1 : path a e.
apply nodes. apply adjs.
apply refl to H5.
apply trans to H10 H13.
apply trans to H7 H14.
search.
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This proof is tedious to write and difficult to maintain since minor changes in an
unrelated part of the graph would alter the numbering of hypotheses. The new
fchain command offers a much shorter and more flexible proof script.

Theorem example1_fchain : path a e.
fchain 6 nodes adjs refl trans.
search.

This use of fchain generates 28 consequences, with one of them being the desired
goal. As explained in Section 4.4, the implementation of the fchain tactic uses a
depth bound instead of checking that the declared lemmas are safe for saturation.
With this depth bound, Abella automatically computes the entire path relation
for this graph.

Of course, fchain can make an even greater difference when the graph
structure grows. This use of the fchain command is invoked with a depth bound
of 6 and a selection of four theorems to use for forward chaining (all of which
are safe for saturation). In general, any larger number than 6 can be used since
the implementation stops forward chaining when it detects saturation, i.e., when
all future forward chaining phases would be useless. The list of lemmas used for
forward chaining could be larger as well without a loss of completeness.

A.2 Reasoning in group theory

If one attempts to reason about algebraic structures (such as semigroups, monoids,
and groups) abstractly, one needs to encode the operators-as-function routinely
used in algebra instead via operators-as-relations. One also needs to accept various
axioms about those relations. For example, the following proof script illustrates
the introduction of some simple aspects of group theory via four predicates:
group is the predicate that denotes the carrier of the set, times denotes the
group operation, unit denotes the unit, and inv denotes the inverse operation.
Some of the associate axioms are also introduced into the proof context.

Kind group type.
Type group group -> prop.
Type times group -> group -> group -> prop.
Type unit group -> prop.
Type inv group -> group -> prop.

Theorem times-types :
forall x y z, times x y z -> (group x /\ group y /\ group z).

Theorem times-total :
forall x y, group x -> group y -> exists u, group u /\ times x y u.

Theorem times-determ : forall x y u v, times x y u -> times x y v -> u = v.
Theorem times-assoc : forall x y xy u xyu yu, times x y xy ->

times xy u xyu -> times y u yu -> times x yu xyu.
Theorem unit-total : exists u, group u /\ unit u.
Theorem unit-rule :
forall u x, unit u -> group x -> times x u x /\ times u x x.

Theorem inv-total :
forall x, group x -> exists i, group i /\ inv x i.

Theorem inv-rule :
forall u x y, unit u -> inv x y -> times x y u /\ times y x u.

Note that while the theorem unit-total is a purely positive formula it is logically
equivalent to the bipole

Theorem unit-total : true -> exists u, group u /\ unit u.
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Also note that all these theorems are safe for saturation except for times-total.
Given this situation, it is possible to prove the following three example

theorems using saturation with all but times-total: this lemma must be applied
via explicit applications.

Theorem times-assoc-left : forall x y u yu xyu xy , times y u yu ->
times x yu xyu -> times x y xy -> times xy u xyu.

intros.
fchain times-types.
apply times-total to _ _ with x = xy , y = u.
fchain 2 times-assoc times-determ.
search.

Theorem cancel-left : forall x a b y, times x a y -> times x b y -> a = b.
intros.
fchain 2 unit-total times-types.
apply inv-total to H3.
fchain inv-rule.
apply times-total to _ _ with x = i, y = y.
apply times-total to _ _ with x = u, y = a.
apply times-total to _ _ with x = u, y = b.
fchain 2 times-determ unit-rule times-assoc.
search.

Theorem inv-of-times : forall x y xy i xi yi j, times x y xy ->
inv xy i -> inv x xi -> inv y yi -> times yi xi j -> i = j.

intros.
fchain 3 unit-total times-types times-types inv-rule.
apply times-total to _ _ with x = xy , y = j.
apply times-total to _ _ with x = y, y = j.
apply times-total to _ _ with x = xy , y = yi.
fchain 1 times-assoc-left times-assoc times-assoc-left

unit-rule times-determ cancel-left.
fchain 3 times-determ cancel-left.
search.

The uses of times-total are used to introduce into the proof context explicit
term constructions. For example, the proof that (xy)−1 = y−1x−1 is a simple
argument once one first invents the term (xy)(y−1x−1), which is done using
times-total. Observe that the final proof scripts are largely free of any mention
of hypotheses created during the proof. In particular, nearly every application of
a lemma is automated by fchain. This makes the proof script quite resilient to
changes in the specification, which might otherwise have changed the number
or order of hypotheses and would have therefore required manually updating
existing proof scripts.

B Application: Relational administrative normal form

B.1 Replacing constructors with relations

Closure of binary relations on terms based on congruences is a common and
useful operation. For example, if we have a binary relation r on terms that we
wish to close under the application of the unary constructor f , we would add the
assumption ∀ix.∀iy.(r x y ⊃ r (f x) (f y)) to the proof context.4 This geometric
implication is not safe for saturation. While forward chaining with this kind of

4 In the rest of this section, we assume that we assume there is exactly one primitive
type, say, i and assume that “term” and “term of type i” mean the same.
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formula is certainly possible and useful in many situations, we can use another
approach to the construction of terms that can benefit from our analysis of
forward chaining and saturation.

The administrative normal form (ANF) used within some compiler to represent
term structures [10] can be used to give an alternative representation of terms
using first-order quantified formulas that do not contain constructors [15, 23]. By
way of example, consider the atomic formula (2 ∗ (5 + 2)) < 8 + 7 involving the
less-than predicate and terms denoting natural numbers. The ANF form of this
expression is the following kind of inverted syntax expression

name x = 5 + 2 in name y = 2 ∗ x in name z = 8 + 7 in y < z.

Here, constructors such as + and ∗ are applied to constants and variables but not
to more complex term structures. We can replace the function symbols + and ∗
by introducing the predicates plus and times so that plus x y z denotes x+ y = z
and times x y z denotes x ∗ y = z. In order for these predicates to capture their
intended functional meaning, they must satisfy the following totality formulas

∀x∀y.(nat x ∧ nat y) ⊃ ∃z.nat z ∧ plus x y z

∀x∀y.(nat x ∧ nat y) ⊃ ∃z.nat z ∧ times x y z

as well as the following determinacy formulas

∀x∀y∀u∀v.(plus x y u ∧ plus x y v) ⊃ u = v

∀x∀y∀u∀v.(times x y u ∧ times x y v) ⊃ u = v

Note that these four formulas can be polarized as bipolar formulas and that when
they both hold, we have the following ambiguity of quantifications:

∀x∀y.[(∀z.plus x y z ⊃ Q z) ≡ (∃z.plus x y z ∧Q z)]

(also holds if plus is replaced by times). We can rewrite the ANF expression
above as the purely positive formula and the bipolar formula

∃x(plus 5 2 x ∧+ ∃y(times 2 x y ∧+ ∃z(plus 8 7 z ∧+ y < z)))

∀x(plus 5 2 x ⊃ ∀y(times 2 x y ⊃ ∀z(plus 8 7 z ⊃ y < z))).

Given the ambiguity mentioned above, these expressions are logically equivalent.
While totality and determinacy are only two of many other properties that are true
of addition and multiplication (e.g., commutativity, associativity, distributivity,
etc), we single out these properties for the sake of the following examples.

Using the ANF representation of term structures, we can represent terms using
relations in the following sense. Every m-ary constructor f can be encoded as
using a m+1-ary predicate Pf so that the atomic formula pf (f t1 · · · tm) t1 . . . tm
holds for all terms t1, . . . , tm. Clearly, both determinacy and totality properties
hold for such predicates representing constructors in this fashion.
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B.2 Congruence closure

Mixing the ANF representation of terms as quantified formulas with saturation
provides a simple (and naive) implementation of congruence closure. We illustrate
how this is possible with the following example.

Example 2. Let a, b, c be constructors of arity 0, and let g and f be constructors
of arity 1 and 2, respectively. We wish to prove the entailment

ga = b, fab = c, fbb = gc ⊢ g(fa(ga)) = fbb.

This entailment can be converted to ANF and written as the following formula.

∀ xa.pa xa ⊃ ∀ xb.pb xb ⊃ ∀ xc.pc xc ⊃
∀ xga.pg xga xa ⊃ ∀ xgc.pg xgc xc ⊃

∀ xfab.pf xfab xa xb ⊃ ∀ xfbb.pf xfbb xb xb ⊃ ∀ xfaga.pf xfaga xa xga ⊃
∀ xgfaga.pg xgfaga xfaga ⊃

xga = xb ⊃ xfab = xc ⊃ xfbb = xgc ⊃ xgfaga = xfpbb.

Attempting a proof of this formula starts with the invertible phase, which reduces
this to an attempt to prove the sequent Σ ::Γ ⊢ xgfaga = xgc, where Σ is
{xa, xb, xc, xgc, xfaga, xgfaga} and Γ is {pa xa, pb xb, pc xc, pg xb xa, pg xgc xc,
pf xc xa xb, pf xgc xb xb, pf xfaga xa xb, pg xgfaga xfaga} (Recall that the
invertible phase solves the equality xga = xb, xfab = xc, xfbb = xgc by, say,
instantiating the second variable with the first.) The formula

∀x∀y∀u∀v.(pf u x y ∧+ pf v x y) ⊃ u = v

states the determinacy of the constructor f . Forward chaining using this formula
will force xc to replace xfaga. Forward chaining using determinacy for g forces
xgfaga to be Xgc. At this point, the goal equality is now trivial.

The theorem named example below encodes that statement and proof of
the entailment ga = b, fab = c, fbb = gc ⊢ g(fa(ga)) = fbb. First, we declare
five constructors, and five predicates used to encode those constructors, then
five lemmas declaring those predicates to support the determinancy of using
constructors.

Kind i type.
Type a,b,c i.
Type g i -> i.
Type f i -> i -> i.

Type aa, bb, cc i -> prop.
Type gg i -> i -> prop.
Type ff i -> i -> i -> prop.

Theorem a-determ : forall A B, aa A -> aa B -> A = B.
Theorem b-determ : forall A B, bb A -> bb B -> A = B.
Theorem c-determ : forall A B, cc A -> cc B -> A = B.
Theorem f-determ : forall A B X Y, ff A X Y -> ff B X Y -> A = B.
Theorem g-determ : forall A B X, gg A X -> gg B X -> A = B.
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The following theorem encodes the equality entailment above using the structure
of ANF. The proofs then use forward reasoning with only these determinancy
lemmas.

Theorem example :
forall Xa, aa Xa -> forall Xb, bb Xb -> forall Xc , cc Xc ->
forall Xga , gg Xga Xa -> forall Xgc , gg Xgc Xc ->
forall Xfab , ff Xfab Xa Xb ->
forall Xfbb , ff Xfbb Xb Xb ->
forall Xfaga , ff Xfaga Xa Xga ->
forall Xgfaga , gg Xgfaga Xfaga ->

Xga = Xb -> Xfab = Xc -> Xfbb = Xgc -> Xgfaga = Xfbb.
intros. case H10. case H11. case H12. % Remove equations
fchain 2 f-determ g-determ. search.

Without using fchain, this last line needs to be more specific.

apply f-determ to H8 H6.
apply g-determ to H9 H5. search.

Of course, with larger examples, this difference is more striking.
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