Kind g type.
Type node g -> prop.
Type adj, path g -> g -> prop.
% Introduce the structure of graphs as a collection of axioms (theorems with skips).
Theorem refl : forall n, node n -> path n n. skip.
Theorem trans : forall x y z, adj x y -> path y z -> path x z. skip.
Type a,b,c,d,e,f g.
Theorem nodes : node a /\ node b /\ node c /\ node d /\ node e /\ node f. skip.
Theorem adjs : adj a b /\ adj a c /\ adj b c /\ adj b e /\ adj c e /\ adj d f. skip.
Theorem example1 : path a e.
apply nodes. apply adjs.
apply refl to H5.
apply trans to H10 H13.
apply trans to H7 H14.
search.
Theorem example1_fchain : path a e.
fchain 6 nodes adjs refl trans.
search.