
Proof Theory and Type Theory:
Distinct Foundations for Designing Proof Assistants

Dale Miller

Inria Saclay &
LIX, Institut Polytechnique de
Paris
Partout Team

Banff meeting, June 2025

Art by Nadia Miller

1 / 30

https://nadiaamiller.wixsite.com/website


Proof Theory and Logic Programming:
Computation as proof search, by Dale Miller

To be published by Cambridge University Press by December 2025.

Preprint available from my web page.
https://www.lix.polytechnique.

fr/Labo/Dale.Miller/ptlp/

Organizes everything I learned about
the intersection of proof theory and
logic programming during four
decades (1985-2025).

Uses classical, intuitionistic, and linear
logic (first-order and higher-order) to
design and reason about logic
programs.

Art by Nadia Miller

Proof Theory
and Logic

Programming
Computation as Proof Search

DALE MILLER

2 / 30

https://www.lix.polytechnique.fr/Labo/Dale.Miller/ptlp/
https://www.lix.polytechnique.fr/Labo/Dale.Miller/ptlp/
https://nadiaamiller.wixsite.com/website


Outline

The world of proof assistants

The Abella proof assistant

A proof theorist’s view of type theory

Sequents and binders

Back to Rocq vs Abella

3 / 30



Published in 2006.
4 / 30



List of proof assistants by formalisms

▶ Church’s STT of types: HOL, Isabelle/Isar, IMPS, Ωmega,
Minlog, Theorema (Frege proofs with discharge)

▶ First-order logic: Mizar, Otter/Ivy, ACL2, B Method,
Metamath (Frege proofs, resolution, equality reasoning)

▶ Type Theory (dependently typed λ-terms): Coq, Alfa/Agda,
Lego, Nuprl, PVS, PhoX

While this classification might be debated, it is clear that

no system is based on Structural Proof Theory.

I take this as a major professional challenge, since I’ve been using
such proof theory successfully with

▶ Logic programming: e.g., Prolog, λProlog, linear logic
programming, and

▶ Model checking: Bedwyr [J. Automated Deduction, 2019]

5 / 30



List of proof assistants by formalisms

▶ Church’s STT of types: HOL, Isabelle/Isar, IMPS, Ωmega,
Minlog, Theorema (Frege proofs with discharge)

▶ First-order logic: Mizar, Otter/Ivy, ACL2, B Method,
Metamath (Frege proofs, resolution, equality reasoning)

▶ Type Theory (dependently typed λ-terms): Coq, Alfa/Agda,
Lego, Nuprl, PVS, PhoX

While this classification might be debated, it is clear that

no system is based on Structural Proof Theory.

I take this as a major professional challenge, since I’ve been using
such proof theory successfully with

▶ Logic programming: e.g., Prolog, λProlog, linear logic
programming, and

▶ Model checking: Bedwyr [J. Automated Deduction, 2019]

5 / 30



List of proof assistants by formalisms

▶ Church’s STT of types: HOL, Isabelle/Isar, IMPS, Ωmega,
Minlog, Theorema (Frege proofs with discharge)

▶ First-order logic: Mizar, Otter/Ivy, ACL2, B Method,
Metamath (Frege proofs, resolution, equality reasoning)

▶ Type Theory (dependently typed λ-terms): Coq, Alfa/Agda,
Lego, Nuprl, PVS, PhoX

While this classification might be debated, it is clear that

no system is based on Structural Proof Theory.

I take this as a major professional challenge, since I’ve been using
such proof theory successfully with

▶ Logic programming: e.g., Prolog, λProlog, linear logic
programming, and

▶ Model checking: Bedwyr [J. Automated Deduction, 2019]

5 / 30



Outline

The world of proof assistants

The Abella proof assistant

A proof theorist’s view of type theory

Sequents and binders

Back to Rocq vs Abella

6 / 30



Abella appeared in 2009.
7 / 30



An interactive theorem prover well-suited for reasoning about the
meta-theory of languages and logics involving binding.

▶ Various results on the λ-calculus involving big-step evaluation,
small-step evaluation, and typing judgments

▶ Cut-admissibility for a sequent calculus

▶ Part 1a and Part 2a of the POPLmark challenge

▶ Several theorems about the π-calculus

▶ Takahashi’s proof of the Church-Rosser theorem

▶ Tait’s logical relations proof of weak normalization for STLC

▶ Girard’s proof of strong normalization of STLC

Abella: A System for Reasoning about Relational Specifications by

Baelde, Chaudhuri, Gacek, Miller, Nadathur, Tiu, and Wang. J. of

Formalized Reasoning 7(2), 2014, 1-89.
8 / 30



Inside Abella
The previous slide is the public face of Abella. The real story is
that Abella is an implementation of the sequent calculus. A goal in
Abella is displayed as

Variables: x1 ... xm

H1 : A1

...

Hn : An

============================

C

where x1, . . . , xm are universally quantified variables, H1, . . . , Hn
are hypothesis labels that are each associated with a unique
hypothesis formula drawn from A1, . . . ,An and C is a formula
called the conclusion of the goal. The collection of variables and
hypotheses is called the context of the goal. This goal denotes, of
course, the sequent

x1 : τ1, . . . , xm : τm :: A1, . . . ,An ⊢ C .

9 / 30



Example sequents in Abella

Variables: M N

IH: forall M N, nat M * -> plus M M N -> times

(s^2 z) M N

H1: nat M @

H2: plus M M N

============================

times (s^2 z) M N

Variables: N1 K1

IH: forall M N, nat M * -> plus M M N -> times

(s^2 z) M N

H3: nat N1 *

H4: plus N1 (s N1) (s K1)

H6: plus N1 N1 K1

H7: times (s^2 z) N1 K1

============================

plus (s N1) (s N1) (s^2 K1)

10 / 30



Example sequents in Abella

Variables: M N

IH: forall M N, nat M * -> plus M M N -> times

(s^2 z) M N

H1: nat M @

H2: plus M M N

============================

times (s^2 z) M N

Variables: N1 K1

IH: forall M N, nat M * -> plus M M N -> times

(s^2 z) M N

H3: nat N1 *

H4: plus N1 (s N1) (s K1)

H6: plus N1 N1 K1

H7: times (s^2 z) N1 K1

============================

plus (s N1) (s N1) (s^2 K1)

10 / 30



Papers developing the proof theory of Abella

Start with Gentzen’s LJ. Add the following extensions.

Equality: Girard [1992], Schroeder-Heister [LICS 1993], McDowell
& M [TCS 2000], M & Viel [AMAI 2022]

Fixed points: McDowell & M [TCS 2000], Momigliano & Tiu
[JAL 2012], Baelde [ToCL 2012]

These raise first-order logic to Heyting Arithmetic.

∇-quantification: Tiu & M [LICS 2003]

Nominal-abstraction: Gacek, M, & Nadathur [I&C 2011]

These additions yield the G logic. It is here that the
λ-tree syntax approach to binders appears.

11 / 30



Papers developing the proof theory of Abella

Start with Gentzen’s LJ. Add the following extensions.

Equality: Girard [1992], Schroeder-Heister [LICS 1993], McDowell
& M [TCS 2000], M & Viel [AMAI 2022]

Fixed points: McDowell & M [TCS 2000], Momigliano & Tiu
[JAL 2012], Baelde [ToCL 2012]

These raise first-order logic to Heyting Arithmetic.

∇-quantification: Tiu & M [LICS 2003]

Nominal-abstraction: Gacek, M, & Nadathur [I&C 2011]

These additions yield the G logic. It is here that the
λ-tree syntax approach to binders appears.

11 / 30



Outline

The world of proof assistants

The Abella proof assistant

A proof theorist’s view of type theory

Sequents and binders

Back to Rocq vs Abella

12 / 30



A proof theorist’s view of type theory:
The structure of proof

Type Theory generally settles two questions simultaneously:

▶ Which logic are you using? Typically, intuitionistic logic.

▶ What is a proof? Typically, natural deduction proofs encoded
as dependently, typed λ-terms.

A proof theorist usually separates these questions and allows a
wide range of proof systems.

Intuitionistic logic: sequent calculus, natural deduction, tableaux

Classical logic: sequent calculus, tableaux, expansion trees,
resolution refutations, natural deduction with restart

Linear logic: proof nets, as well.

Deep inference structures are also generally applicable.

13 / 30



A proof theorist’s view of type theory:
The structure of proof

Type Theory generally settles two questions simultaneously:

▶ Which logic are you using? Typically, intuitionistic logic.

▶ What is a proof? Typically, natural deduction proofs encoded
as dependently, typed λ-terms.

A proof theorist usually separates these questions and allows a
wide range of proof systems.

Intuitionistic logic: sequent calculus, natural deduction, tableaux

Classical logic: sequent calculus, tableaux, expansion trees,
resolution refutations, natural deduction with restart

Linear logic: proof nets, as well.

Deep inference structures are also generally applicable.

13 / 30



A proof theorist’s view of type theory:
Structural problems with the proof-as-λ-term approach

λ-reduction is

▶ wildly non-deterministic, resulting in CBV, CBN, CBPV, etc,
and

▶ not the most efficient way to normalize expressions.

Typed λ-terms

▶ can be highly redundant structures and

▶ have no explicit structure-sharing mechanisms.

Other complicating features:

▶ proof irrelevance: too many subproofs kept

▶ implicit arguments: too inconvenient to supply all arguments

▶ universe levels: needed to organize rich typing structures

14 / 30



A proof theorist’s view of type theory:
Structural problems with the proof-as-λ-term approach

λ-reduction is

▶ wildly non-deterministic, resulting in CBV, CBN, CBPV, etc,
and

▶ not the most efficient way to normalize expressions.

Typed λ-terms

▶ can be highly redundant structures and

▶ have no explicit structure-sharing mechanisms.

Other complicating features:

▶ proof irrelevance: too many subproofs kept

▶ implicit arguments: too inconvenient to supply all arguments

▶ universe levels: needed to organize rich typing structures

14 / 30



A proof theorist’s view of type theory:
Structural problems with the proof-as-λ-term approach

λ-reduction is

▶ wildly non-deterministic, resulting in CBV, CBN, CBPV, etc,
and

▶ not the most efficient way to normalize expressions.

Typed λ-terms

▶ can be highly redundant structures and

▶ have no explicit structure-sharing mechanisms.

Other complicating features:

▶ proof irrelevance: too many subproofs kept

▶ implicit arguments: too inconvenient to supply all arguments

▶ universe levels: needed to organize rich typing structures

14 / 30



A proof theorist’s view of type theory:
Many aspects of type theory come from proof theory

▶ Cut-elimination, non-atomic initial elimination: these give rise
to β and η-conversions.

▶ Cut-elimination is called weak normalization in type theory.
Strong normalization is often of secondary importance in
proof theory.

▶ Canonical dependently typed λ-terms derived from the notion
of uniform proofs (focused proofs).

▶ Linear logic appears in proof theory first and later moves to
type theory.

15 / 30



A proof theorist’s view of type theory:
The type theory approach to classical logic

Gentzen [1935] added the excluded middle to NJ to get NK
(natural deduction for classical logic). He abandoned NK since it
did not have good proof-theoretic properties.

Unfortunately, Gentzen’s solution (multiple-conclusion sequent
calculus) is ruled out by type theory (generally speaking).

The Rocq system allows classical reasoning but only via the
addition of appropriate axioms.

16 / 30



A proof theorist’s view of type theory:
Treatment of bindings

Higher-order abstract syntax: If your object-level syntax (formulas,
programs, types, etc) contain binders, then map them to
meta-language binders.

Type theory: the binders available are those for function spaces.

Proof Search: the binders available are λ-expressions with equality
modulo λ-conversions (as in λProlog).

These approaches are different. Consider ∀wi . λx .x ̸= λx .w .

Type theory: Not a theorem since the identity and the constant
valued function coincide on singleton domains.

Proof search: Is a theorem since no instance of λx .w equals λx .x .

The latter approach to HOAS is called the λ-tree syntax approach.

How can proof theory account for binders?

17 / 30



A proof theorist’s view of type theory:
Treatment of bindings

Higher-order abstract syntax: If your object-level syntax (formulas,
programs, types, etc) contain binders, then map them to
meta-language binders.

Type theory: the binders available are those for function spaces.

Proof Search: the binders available are λ-expressions with equality
modulo λ-conversions (as in λProlog).

These approaches are different. Consider ∀wi . λx .x ̸= λx .w .

Type theory: Not a theorem since the identity and the constant
valued function coincide on singleton domains.

Proof search: Is a theorem since no instance of λx .w equals λx .x .

The latter approach to HOAS is called the λ-tree syntax approach.

How can proof theory account for binders?

17 / 30



A proof theorist’s view of type theory:
Treatment of bindings

Higher-order abstract syntax: If your object-level syntax (formulas,
programs, types, etc) contain binders, then map them to
meta-language binders.

Type theory: the binders available are those for function spaces.

Proof Search: the binders available are λ-expressions with equality
modulo λ-conversions (as in λProlog).

These approaches are different. Consider ∀wi . λx .x ̸= λx .w .

Type theory: Not a theorem since the identity and the constant
valued function coincide on singleton domains.

Proof search: Is a theorem since no instance of λx .w equals λx .x .

The latter approach to HOAS is called the λ-tree syntax approach.

How can proof theory account for binders?

17 / 30



A proof theorist’s view of type theory:
Treatment of bindings

Higher-order abstract syntax: If your object-level syntax (formulas,
programs, types, etc) contain binders, then map them to
meta-language binders.

Type theory: the binders available are those for function spaces.

Proof Search: the binders available are λ-expressions with equality
modulo λ-conversions (as in λProlog).

These approaches are different. Consider ∀wi . λx .x ̸= λx .w .

Type theory: Not a theorem since the identity and the constant
valued function coincide on singleton domains.

Proof search: Is a theorem since no instance of λx .w equals λx .x .

The latter approach to HOAS is called the λ-tree syntax approach.

How can proof theory account for binders?

17 / 30



Outline

The world of proof assistants

The Abella proof assistant

A proof theorist’s view of type theory

Sequents and binders

Back to Rocq vs Abella

18 / 30



Dynamics of binders during proof search

During computation, binders can be instantiated

Σ : Γ, typeof c (int → int) ⊢ C

Σ : Γ,∀α(typeof c (α → α)) ⊢ C
∀L

or they can move (a feature called the mobility of binders):

Σ, x : Γ, typeof x α ⊢ typeof ⌈B⌉ β

Σ : Γ ⊢ ∀x(typeof x α ⊃ typeof ⌈B⌉ β)
∀R

Σ : Γ ⊢ typeof ⌈λx.B⌉ (α → β)

The binder for x moves from term-level (λx) to formula-level (∀x)
to proof-level (as an eigenvariable).

Note: The variables in the signature Σ are eigenvariables and are
bound over Γ ⊢ C .

“There is no such thing as a free variable.”-Epigram 47, A. Perlis

19 / 30



Dynamics of binders during proof search

During computation, binders can be instantiated

Σ : Γ, typeof c (int → int) ⊢ C

Σ : Γ,∀α(typeof c (α → α)) ⊢ C
∀L

or they can move (a feature called the mobility of binders):

Σ, x : Γ, typeof x α ⊢ typeof ⌈B⌉ β

Σ : Γ ⊢ ∀x(typeof x α ⊃ typeof ⌈B⌉ β)
∀R

Σ : Γ ⊢ typeof ⌈λx.B⌉ (α → β)

The binder for x moves from term-level (λx) to formula-level (∀x)
to proof-level (as an eigenvariable).

Note: The variables in the signature Σ are eigenvariables and are
bound over Γ ⊢ C .

“There is no such thing as a free variable.”-Epigram 47, A. Perlis

19 / 30



Quiz

Consider a simple object-logic with a pairing constructor ⟨x , y⟩.

Assume that the formula ∀u∀v [q ⟨u, t1⟩ ⟨v , t2⟩ ⟨v , t3⟩] follows
from the assumptions

L = {∀x∀y [q x x y ], ∀x∀y [q x y x ], ∀x∀y [q y x x ]}.

What can we say about the terms t1, t2, and t3?

Answer: The terms t2 and t3 are equal. We would like to prove
(and we can prove in Abella)

∀t1∀t2∀t3[prv L (∀u∀v [q ⟨u, t1⟩ ⟨v , t2⟩ ⟨v , t3⟩]) ⊃ t2 = t3

This conclusion holds for intensional, not extensional, reasons.

Such an intensional treatment does not seem possible if binder
mobility to the proof level is limited to eigenvariables.

20 / 30



Quiz

Consider a simple object-logic with a pairing constructor ⟨x , y⟩.

Assume that the formula ∀u∀v [q ⟨u, t1⟩ ⟨v , t2⟩ ⟨v , t3⟩] follows
from the assumptions

L = {∀x∀y [q x x y ], ∀x∀y [q x y x ], ∀x∀y [q y x x ]}.

What can we say about the terms t1, t2, and t3?

Answer: The terms t2 and t3 are equal. We would like to prove
(and we can prove in Abella)

∀t1∀t2∀t3[prv L (∀u∀v [q ⟨u, t1⟩ ⟨v , t2⟩ ⟨v , t3⟩]) ⊃ t2 = t3

This conclusion holds for intensional, not extensional, reasons.

Such an intensional treatment does not seem possible if binder
mobility to the proof level is limited to eigenvariables.

20 / 30



Generic judgments and the ∇-quantifier

We add to sequents another binding context: attach a local
signature to every formula.

Σ : B1, . . . ,Bn −→ B0

⇓
Σ : σ1 ▷ B1, . . . , σn ▷ Bn −→ σ0 ▷ B0

Here, σi is a list of distinct variables scoped over Bi .

The expression σi ▷ Bi is called a generic judgment.

Standard proof theory design: Enrich with a new context and add
connectives that deal with that enrichment.

The left and right introductions for ∇ (nabla) are

Σ : (σ, x : τ) ▷ B, Γ −→ C
Σ : σ ▷ ∇τx .B, Γ −→ C

Σ : Γ −→ (σ, x : τ) ▷ B

Σ : Γ −→ σ ▷ ∇τx .B

21 / 30



Generic judgments and the ∇-quantifier

We add to sequents another binding context: attach a local
signature to every formula.

Σ : B1, . . . ,Bn −→ B0

⇓
Σ : σ1 ▷ B1, . . . , σn ▷ Bn −→ σ0 ▷ B0

Here, σi is a list of distinct variables scoped over Bi .

The expression σi ▷ Bi is called a generic judgment.

Standard proof theory design: Enrich with a new context and add
connectives that deal with that enrichment.

The left and right introductions for ∇ (nabla) are

Σ : (σ, x : τ) ▷ B, Γ −→ C
Σ : σ ▷ ∇τx .B, Γ −→ C

Σ : Γ −→ (σ, x : τ) ▷ B

Σ : Γ −→ σ ▷ ∇τx .B

21 / 30



Generic judgments and the ∇-quantifier

We add to sequents another binding context: attach a local
signature to every formula.

Σ : B1, . . . ,Bn −→ B0

⇓
Σ : σ1 ▷ B1, . . . , σn ▷ Bn −→ σ0 ▷ B0

Here, σi is a list of distinct variables scoped over Bi .

The expression σi ▷ Bi is called a generic judgment.

Standard proof theory design: Enrich with a new context and add
connectives that deal with that enrichment.

The left and right introductions for ∇ (nabla) are

Σ : (σ, x : τ) ▷ B, Γ −→ C
Σ : σ ▷ ∇τx .B, Γ −→ C

Σ : Γ −→ (σ, x : τ) ▷ B

Σ : Γ −→ σ ▷ ∇τx .B

21 / 30



The remaining proof theory can be explored directly

Note that ∇ is self-dual: ¬∇x .Bx ⊣⊢ ∇x .¬Bx

How does ∇ interact with the other connectives and quantifiers?

How do we add induction and coinduction?

When are two generic judgments equal?

Cut-elimination - mostly follows the structure of first-order
intuitionistic logic.

A classical logic treatment is straightforward: the difference
between open and late bisimulation in the π-calculus is a choice of
choosing intuitionistic or classical logic.

Abella was developed on these proof theory results.

22 / 30



The remaining proof theory can be explored directly

Note that ∇ is self-dual: ¬∇x .Bx ⊣⊢ ∇x .¬Bx

How does ∇ interact with the other connectives and quantifiers?

How do we add induction and coinduction?

When are two generic judgments equal?

Cut-elimination - mostly follows the structure of first-order
intuitionistic logic.

A classical logic treatment is straightforward: the difference
between open and late bisimulation in the π-calculus is a choice of
choosing intuitionistic or classical logic.

Abella was developed on these proof theory results.

22 / 30



Applications of ∇ to meta-theory
π-calculus

▶ A Proof Theory for Generic Judgments, by M and Tiu, ToCL
2005.

▶ Proof search specifications of bisimulation and modal logics
for the π-calculus by Tiu and M. ToCL, 2010.

▶ A lightweight formalization of the metatheory of
bisimulation-up-to by Chaudhuri, Cimini, and M. CPP 2015.

λ-calculus

▶ Proof pearl: Abella formalization of lambda calculus cube
property, by Accattoli CPP 2012.

▶ A Mechanical Formalization of Higher-Ranked Polymorphic
Type Inference, by Zhao, Oliveira, and Schrijvers, ICFP 2019.

▶ Barendregt’s theory of the lambda-calculus, refreshed and
formalized, by Lancelot, Accattoli, and Vemclefs. ITP 2025.

Abella developments are small: there is not yet a lot of support for
big developments.

23 / 30



Applications of ∇ to meta-theory
π-calculus

▶ A Proof Theory for Generic Judgments, by M and Tiu, ToCL
2005.

▶ Proof search specifications of bisimulation and modal logics
for the π-calculus by Tiu and M. ToCL, 2010.

▶ A lightweight formalization of the metatheory of
bisimulation-up-to by Chaudhuri, Cimini, and M. CPP 2015.

λ-calculus

▶ Proof pearl: Abella formalization of lambda calculus cube
property, by Accattoli CPP 2012.

▶ A Mechanical Formalization of Higher-Ranked Polymorphic
Type Inference, by Zhao, Oliveira, and Schrijvers, ICFP 2019.

▶ Barendregt’s theory of the lambda-calculus, refreshed and
formalized, by Lancelot, Accattoli, and Vemclefs. ITP 2025.

Abella developments are small: there is not yet a lot of support for
big developments.

23 / 30



Applications of ∇ to meta-theory
π-calculus

▶ A Proof Theory for Generic Judgments, by M and Tiu, ToCL
2005.

▶ Proof search specifications of bisimulation and modal logics
for the π-calculus by Tiu and M. ToCL, 2010.

▶ A lightweight formalization of the metatheory of
bisimulation-up-to by Chaudhuri, Cimini, and M. CPP 2015.

λ-calculus

▶ Proof pearl: Abella formalization of lambda calculus cube
property, by Accattoli CPP 2012.

▶ A Mechanical Formalization of Higher-Ranked Polymorphic
Type Inference, by Zhao, Oliveira, and Schrijvers, ICFP 2019.

▶ Barendregt’s theory of the lambda-calculus, refreshed and
formalized, by Lancelot, Accattoli, and Vemclefs. ITP 2025.

Abella developments are small: there is not yet a lot of support for
big developments.

23 / 30



Specifying object-level provability as an inductive predicate

seq Hs A := memb A L.

seq Hs A := prog A B /\ seq Hs B.

seq Hs (B and C) := seq Hs B /\ seq Hs C.

seq Hs (B imp C) := seq (B::Hs) C.

prog (plus z N N) tt.

prog (plus (s M) N (s P)) (plus M N P).

...

Theorems:

forall N M, seq nil (plus N M N) -> M = z.

forall N, seq nil (plus (s z) N z) -> false

Treating object-level eigenvariables

seq Hs (all x\ B x) := nabla x\ seq Hs (B x).

24 / 30



Specifying object-level provability as an inductive predicate

seq Hs A := memb A L.

seq Hs A := prog A B /\ seq Hs B.

seq Hs (B and C) := seq Hs B /\ seq Hs C.

seq Hs (B imp C) := seq (B::Hs) C.

prog (plus z N N) tt.

prog (plus (s M) N (s P)) (plus M N P).

...

Theorems:

forall N M, seq nil (plus N M N) -> M = z.

forall N, seq nil (plus (s z) N z) -> false

Treating object-level eigenvariables

seq Hs (all x\ B x) := nabla x\ seq Hs (B x).

24 / 30



Specifying object-level provability as an inductive predicate

seq Hs A := memb A L.

seq Hs A := prog A B /\ seq Hs B.

seq Hs (B and C) := seq Hs B /\ seq Hs C.

seq Hs (B imp C) := seq (B::Hs) C.

prog (plus z N N) tt.

prog (plus (s M) N (s P)) (plus M N P).

...

Theorems:

forall N M, seq nil (plus N M N) -> M = z.

forall N, seq nil (plus (s z) N z) -> false

Treating object-level eigenvariables

seq Hs (all x\ B x) := nabla x\ seq Hs (B x).

24 / 30



Outline

The world of proof assistants

The Abella proof assistant

A proof theorist’s view of type theory

Sequents and binders

Back to Rocq vs Abella

25 / 30



The many approaches to binders used with Rocq

Many packages have been implemented, and none seem canonical.

▶ Named Variables (first-order)

▶ De Bruijn Indices

▶ Locally Nameless

▶ Higher-Order Abstract Syntax (HOAS)

▶ Hybrid: A Definitional Two-Level Approach to Reasoning with
HOAS (Felty & Momigliano)

▶ Parametric HOAS (PHOAS)

▶ Nominal Approach (Pitts, Gabbay, etc)

There are challenge problems (POPLMark, POPLMark reloaded),
case studies, benchmarks, and surveys.

26 / 30



Different implementation techniques in Rocq and Abella

Abella relies on

▶ unification (even of terms with binders) [Banff 1989]

▶ controlled backtracking search

▶ computation of functions presented as relations (NEW!).

▶ forward chaining and saturation (NEW!)

Rocq relies on

▶ rich type checking

▶ function programming style computation

▶ Separation of the kernel from proof refinement.

▶ Refinement is programmable using tactics

27 / 30



One commonality between Abella and Rocq

They both contain implementations of λProlog

▶ Abella supports the “two-level of logic approach”. λProlog is
the object-level specification.

▶ The Rocq-ELPI plug-in embeds the ELPI-λProlog into the
Rocq prover. λProlog has access to Rocq structures such as
proofs, specifications, logical expressions, etc.

▶ Tassi et al., ELPI, Rocq-ELPI 2015-present.

▶ “Trocq: Proof Transfer for Free, With or Without Univalence”
by Cohen, Crance, and Mahboubi (ESOP 2024).

28 / 30



Conclusions

▶ Designing proof assistants based on proof theory should have
its advantages.

▶ The proof theory treatment of binders in syntax

▶ is natural and useful, and
▶ is difficult to repeat in type theory based systems.

▶ Some future avenues:
▶ Proof theory easily motivates richer terms structures, including

a first-class treatment of sharing [M & Wu, CSL 2023].
▶ Proof transformation, proof distillation, elaborating proof

outlines. Logic programming technology allows for some
proof-reconstruction during proof checking.

▶ See: Matteo Manighetti’s 2022 PhD “Developing proof theory
for proof exchange”.

29 / 30



Thanks

Questions?

Art by Nadia Miller

30 / 30

https://nadiaamiller.wixsite.com/website

	The world of proof assistants
	The Abella proof assistant
	A proof theorist's view of type theory
	Sequents and binders
	Back to Rocq vs Abella

